📄 rfc2098.txt
字号:
an unused Dedicated-VC are analyzed at IP level and transmitted toward adequate next hop over an unused Dedicated-VC. Then incoming Dedicated-VC and outgoing Dedicated-VC are concatenated to construct a Bypass-pipe. In inband control, Bypass-pipe control messages transmitted after a Bypass-pipe has been set up cannot be identified at intermediate CSRs since those messages are forwarded at cell level there. As a possible solution for this issue, intermediate CSRs can identify Bypass-pipe control messages by marking cell headers, e.g., PTI bit which indicates F5 OAM cell. With regard to Bypass-pipe release, explicit release message may not be necessary if individual CSRs administer the amount of traffic over each Dedicated-VC and deletes concatenation information for an inactive Bypass-pipe with their own decision.ii) Outband Control Message When a Bypass-pipe is set up or released, control messages are transmitted over VCs which are different from Dedicated-VCs used as components of the Bypass-pipe. Unlike inband message protocol described in i), each message has to indicate which Dedicated-VCs the message would like to control. Therefore, an identifier that uniquely discriminates a VC, which is not a VPI/VCI that is not identical at both endpoints of the VC, need to be defined and be given at VC initiation phase. However, an issue of control message transmission after a Bypass-pipe has been set up in inband case does not exist. Four alternatives are possible regarding how to convey Bypass-pipe control messages hop-by-hop over ATM datalink networks. 1) Defines VC for Bypass-pipe control messages only. 2) Uses Default-VC and discriminates Bypass-pipe control messages from user datagrams by an LLC/SANP value in RFC1483 encapsulation. 3) Uses Default-VC and discriminates Bypass-pipe control messages from user datagrams by a protocol field value in IP header. 4) Uses Default-VC and discriminates Bypass-pipe control messages from user datagrams by a port ID in the UDP frame. When we take into account interoperability with Bypass-incapable routers, 1) will not be a good choice. Whether we select 2) or 3) 4) depends on whether we should consider multiprotocol rather than IP only.Katsube, et. al. Informational [Page 13]RFC 2098 Toshiba's Router Extension for ATM February 1997 In the case of IP multicast, point-to-multipoint VCs in individual subnets are concatenated at CSRs consecutively in order to constitute end-to-end multicast tree. Above four alternatives may require the same number of point-to-multipoint Defalut-VCs as the number of requested point-to-multipoint Dedicated-VCs in multicast case. The fifth alternative which can reduce the necessary number of VCs to convey control messages in a multicast environment is; 5) Defines point-to-multipoint VC whose leaves are members of multicast group 224.0.0.1. All nodes which are members of at least one of active multicast group would become leaves of this point-to-multipoint VC. Each upstream node may become a root of the point-to-multipoint VC, or a sort of multicast server to which each upstream node transmits cells over a point-to-point VC may become a root of that. In any case, Bypass-pipe control messages for every multicast group are transmitted to all nodes which are members of either of the group. When a downstream node has received control messages which are not related to a multicast group it belongs, it should discard them by referring to a destination group address on their IP header. Donwstream node would still need to use point-to-point VC to send control messages toward upstream.iii) Use of ATM Signaling Message Supposing that ATM signaling messages can convey IP addresses (and possibly port IDs) of source and destination, it may be possible that ATM signaling messages be used as Bypass-pipe control messages also. In that case, an ATM connection setup message indicates a setup of a Dedicated-VC to an ATM address of a desirable next-hop IP node, and also indicates a setup of a Bypass-pipe to an IP address (and possibly port ID) of a target destination node. Information elements for the Dedicated-VC setup (ATM address of a next-hop node, bandwidth, QoS, etc.) are handled at ATM nodes, while information elements for the Bypass-pipe setup (source and destination IP addresses, possibly their port IDs, or flow label for IPv6, etc.) are transparently transferred to the next-hop IP node. The next-hop IP node accepts Dedicated-VC setup and handles such IP level information elements. ATM signaling messages can be transferred from receiver to sender as well as sender to receiver when you set zero Forward Cell Rate and non-zero Backward Cell Rate as an ATM traffic descriptor information element in unicast case, or when Leaf Initiated Join capabilities will become available in multicast case.Katsube, et. al. Informational [Page 14]RFC 2098 Toshiba's Router Extension for ATM February 1997 Issues in this method are, - Information elements which specify IP level (and port level) information need to be defined, e.g., B-HLI or B-UUI, as an ATM signaling specification. - It would be difficult to support soft-state Bypass-pipe control which transmits control messages periodically since ATM signaling is a hard-state protocol.4.3.3 Bypass-pipe Control Procedures This subsection discusses several items with regard to actual procedures for Bypass-pipe control.a) Distributed trigger vs. Centralized (restricted) trigger The first item to be discussed is whether the functionality of detecting a trigger of Dedicated-VC/Bypass-pipe control is distributed to all the nodes (including CSRs and hosts/edge devices) or restricted to specific nodes. In the case of the distributed trigger, every node is regarded as having a capability of detecting a trigger of Bypass-pipe setup or termination. For example, every node detects datagrams for ftp, and sets up (or fetches) a Dedicated-VC individually to construct a Bypass-pipe. After setting up or fetching the Dedicated-VCs, messages which informs (or requests) the transmission of the IP flow over the Dedicated-VC are exchanged between adjacent nodes. That enables peer nodes to share the same knowledge about the mapping relationship between the IP flow and the Dedicated-VC. There is no end-to-end message transmission in the Bypass-pipe control procedure itself, but transmission between adjacent nodes only. In the case of the centralized (or restricted) trigger, capability of detecting a trigger of Bypass-pipe setup or termination is restricted to nodes which are located at "the boundary of the CSR-cloud". The boundary of the CSR-cloud signifies, for individual IP flows, the node which is the first-hop or the last-hop CSR-capable node. For example, a node which detects datagrams for ftp can initiate Bypass- pipe setup procedure only when its previous hop is non-ATM or CSR- incapable. In this case, Bypass-pipe control messages are originated at the boundary of the CSR-cloud, and forwarded hop-by-hop toward another side of the boundary, which is similar to ATM signaling messages. The semantics of the messages may be the request of end- to-end Bypass-pipe setup as well as notification or request of mapping relationship between the IP flow and the Dedicated-VC.Katsube, et. al. Informational [Page 15]RFC 2098 Toshiba's Router Extension for ATM February 1997b) Upstream-initiated control vs. Downstream-initiated control The second item to be discussed is whether the setup of a Dedicated- VC and the control procedure for constructing a Bypass-pipe are initiated by upstream side or downstream side. In the case of the upstream-initiated control, the upstream node takes the initiative when setting up a Dedicated-VC for a specific IP flow and creating the mapping relationship between the IP flow and the Dedicated-VC. For example, a CSR which detects datagrams for ftp sets up (or fetches) a Dedicated-VC toward its downstream neighbor and notifies its downstream neighbor that it will transmit a specific IP flow over the Dedicated-VC. This means that the downstream node is requested to receive datagrams from the Dedicated-VC. In the case of the downstream-initiated control, the downstream node takes the initiative when setting up a Dedicated-VC for a specific IP flow and creating the mapping relationship between the IP flow and the Dedicated-VC. For example, a CSR which detects datagrams for ftp sets up (or fetches) a Dedicated-VC toward its upstream neighbor and requests its upstream neighbor to transmit a specific IP flow over the Dedicated-VC. This means that the upstream node is requested to transmit the IP flow over the Dedicated-VC.c) Hard-state management vs. Soft-state management The third item to be discussed is whether the control (setup, maintain, and release) of the Bypass-pipe is based on hard-state or soft-state. In hard-state management, individual nodes transmit Bypass-pipe control messages only when they want to notify or request any change in their neighbors' state. They should wait for an acknowledgement of the message before they change their internal state. For example, after setting up a Bypass-pipe, it is maintained until either of a peer nodes transmits a message to release the Bypass-pipe. In soft-state management, individual nodes periodically transmit Bypass-pipe control messages in order to maintain their neighbors' state. They do not have to wait for an acknowledgement of the message before they changes its internal state. For example, even after setting up a Bypass-pipe, either of a peer nodes is required to periodically transmit refresh messages to its neighbor in order to maintain the Bypass-pipe.5. Security Considerations Security issues are not discussed in this memo.Katsube, et. al. Informational [Page 16]RFC 2098 Toshiba's Router Extension for ATM February 19976. Summary Basic concept of Cell Switch Router (CSR) are clarified and control architecture for CSR is discussed. A number of methods to control Bypass-pipe will be possible each of which has its own advantages and disadvantages. Further investigation and discussion will be necessary to design control protocol which may depend on the requirements by users.7. References [IPMC96] Armitage, G., "Support for Multicast over UNI 3.0/3.1 based ATM Networks", RFC 2022, November 1996. [ATM3.1] The ATM-Forum, "ATM User-Network Interface Specification, v.3.1", Sept. 1994. [RSVP13] Braden, R., et al., "Resource ReSerVation Protocol (RSVP), Version 1 Functional Specification", Work in Progress. [IPNNI96] R. Callon, et al., "Issues and Approaches for Integrated PNNI", The ATM Forum Contribution No. 96-0355, April 1996. [NHRP09] Luciani, J., et al., "NBMA Next Hop Resolution Protocol (NHRP)", Work in Progress. [PNNI1.0] The ATM-Forum, "P-NNI Specification Version 1.0", March 1996. [RFC1483] Heinanen, J., "Multiprotocol Encapsulation over ATM Adaptation Layer 5", RFC 1483, July 1993. [RFC1577] Laubach, M., "Classical IP and ARP over ATM", RFC 1577, October 1993. [RFC1819] Delgrossi, L, and L. Berger, "Internet STream Protocol Version 2 (STII) Protocol Specification Version ST2+", RFC 1819, August 1995.Katsube, et. al. Informational [Page 17]RFC 2098 Toshiba's Router Extension for ATM February 19978. Authors' Addresses Yasuhiro Katsube R&D Center, Toshiba 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan Phone : +81-44-549-2238 EMail : katsube@isl.rdc.toshiba.co.jp Ken-ichi Nagami R&D Center, Toshiba 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan Phone : +81-44-549-2238 EMail : nagami@isl.rdc.toshiba.co.jp Hiroshi Esaki R&D Center, Toshiba 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan Phone : +81-44-549-2238 EMail : hiroshi@isl.rdc.toshiba.co.jpKatsube, et. al. Informational [Page 18]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -