📄 rfc2098.txt
字号:
RFC 2098 Toshiba's Router Extension for ATM February 1997 IP subnet X IP subnet Y IP subnet Z <---------------------> <-----------------> <---------------------> +-------+ Default +-------+ Default +-------+ Default +-------+ | | -VC | CSR 1 | -VC | CSR 2 | -VC | | | Host +=============+ +===============+ +=============+ Host | | X.1 +-------------+++++---------------+++++-------------+ Z.1 | | +-------------+++++---------------+++++-------------+ | | +-------------+++++---------------+++++-------------+ | | |Dedicated | | Dedicated | |Dedicated | | +-------+ -VCs +-------+ -VCs +-------+ -VCs +-------+ <---------------------------------------------------> Bypass-pipe Figure 1 Internetworking Architecture based on CSR3.2 Features The main feature of the CSR-based internetworking architecture is the same as that of the NHRP-based architecture in the sense that they both provide direct ATM level connectivity beyond IP subnet boundaries. There are, however, several notable differences in the CSR-based architecture compared with the NHRP-based one as follows.1) Relationship between IP routing and ATM routing In the NHRP model, an egress point of the ATM network is first determined in the next hop resolution phase based on IP level routing information. Then the actual route for an ATM-VC to the obtained egress point is determined in the ATM connection setup phase based on ATM level routing information. Both kinds of routing information would be calculated according to factors such as network topology and available bandwidth for the large ATM cloud. The ATM routing will be based on PNNI phase1 [PNNI1.0] while the IP routing will be based on OSPF, BGP, IS-IS, etc. We need to manage two different routing protocols over the large ATM cloud until Integtrated-PNNI [IPNNI96] which takes both ATM level metric and IP level metric into account will be phased in in the future. In the CSR model, IP level routing determines an egress point of the ATM cloud as well as determines inter-subnet level path to the point that shows which CSRs it should pass through. ATM level routing determines an intra-subnet level path for ATM-VCs (both Dedicated-VC and Default-VC) only between adjacent nodes (CSRs or ATM-attached hosts/routers). Since the roles of routing are hierarchically subdivided into inter-subnet level (router level) and intra-subnet level (ATM SW level), ATM routing does not have to operate all overKatsube, et. al. Informational [Page 7]RFC 2098 Toshiba's Router Extension for ATM February 1997 the ATM cloud but only in individual IP subnets independent from each other. This will decrease the amount of information for ATM routing protocol handling. But an end-to-end ATM path may not be optimal compared with the NHRP model since the path should go through routers at subnet boundaries in the CSR model.2) Dynamic routing and redundancy support A CSR-based network can dynamically change routes for Bypass-pipes when related IP level routing information changes. Bypass-pipes related to the routing changes do not have to be torn down nor established from scratch since intermediate CSRs related to IP routing changes can follow them and change routes for related Bypass-pipes by themselves. The same things apply when some error or outage happens in any ATM nodes/links/routers on the route of a Bypass-pipe. CSRs that have noticed such errors or outages would change routes for related Bypass-pipes by themselves.3) Interoperability with IP level resource reservation protocols in multicast environments As current NHRP specification assumes application of NHRP to unicast environments only, multicast IP flows should still be carried based on a hop-by-hop manner with multicast routers. In addition, realization of IP level resource reservation protocols such as RSVP over NHRP environments requires further investigation. The CSR-based internetworking architecture which keeps subnet-by- subnet internetworking with regard to any control protocol sequence can provide multicast Bypass-pipes without requiring any modifications in IP multicast over ATM [IPMC96] or multicast routing techniques. In addition, since the CSR can handle RSVP messages which are transmitted in a hop-by-hop manner, it can provide Bypass- pipes which satisfy QoS requirements by the cooperation of the RSVP and the Bypass-pipe control protocol.4. Control Architecture for CSR Several issues with regard to a control architecture for the CSR are discussed in this section.4.1 Network Reference Model In order to help understanding discussions in this section, the following network reference model is assumed. Source hosts S1, S2, and destination hosts D1, D2 are attached to Ethernets, while S3 andKatsube, et. al. Informational [Page 8]RFC 2098 Toshiba's Router Extension for ATM February 1997 D3 are attached to the ATM. Routers R1 and R5 are attached to Ethernets only, while R2, R3 and R4 are attached to the ATM. The ATM datalink for subnet #3 and subnet #4 can either be physically separated datalinks or be the same datalink. In other words, R3 can be either one-port or multi-port router. Ether Ether ATM ATM Ether Ether | | +-----+ +-----+ | | | | | | | | | | S1--| S2---| S3---| | | |---D3 |---D2 |--D1 | | | | | | | | |---R1---|---R2---| |--R3--| |---R4---|---R5---| | | | | | | | | | | +-----+ +-----+ | | subnet subnet subnet subnet subnet subnet #1 #2 #3 #4 #5 #6 Figure 2 Network Reference Model Bypass-pipes can be configured [S3 or R2]-->R3-->[D3 or R4]. That means that S3, D3, R2, R3 and R4 need to speak Bypass-pipe control protocol, and means that R3 needs to be the CSR. We use term "Bypass-capable nodes" for hosts/routers which can speak Bypass-pipe control protocol but are not necessarily CSRs. As shown in this reference model, Bypass-pipe can be configured from host to host (S3-->R3-->D3), router to host (R2-->R3-->D3), host to router (S3-->R3-->R4), and router to router (R2-->R3-->R4).4.2 Possible Use of Bypass-pipe Possible use (or purposes) of Bypass-pipe provided by CSRs, in other words, possible triggers that initiate Bypass-pipe setup procedure, is discussed in this subsection. Following two purposes for Bypass-pipe setup are assumed at present;a) Provision of low latency path This indicates cases in which end hosts or routers initiate a Bypass-pipe setup procedure when they will transmit large amount of datagrams toward a specific destination. For instance, - End hosts or routers initiate Bypass-pipe setup procedures based on the measurement of IP datagrams transmitted toward a certain destination.Katsube, et. al. Informational [Page 9]RFC 2098 Toshiba's Router Extension for ATM February 1997 - End hosts or routers initiate Bypass-pipe setup procedures when it detects datagrams with certain higher layer protocols such as ftp, nntp, http, etc. Other triggers may be possible depending on the policy in each network. In any case, the purpose of Bypass-pipe setup in each of these cases is to reduce IP processing burden at intermediate routers as well as to provide a communication path with low latency for burst data transfer, rather than to provide end host applications with specific bandwidth/QoS. There would be no rule for determining bandwidth for such kinds of Bypass-pipes since no explicit information about bandwidth/QoS requirement by end hosts is available without IP-level resource reservation protocols such as RSVP. Using UBR VCs as components of the Bypass-pipe would be the easiest choice although there is no guarantees for cell loss quality, while using other services such as CBR/VBR/ABR with an adequate parameter tuning would be possible.b) Provision of specific bandwidth/QoS requested by hosts This indicates cases in which routers or end hosts initiate a Bypass-pipe setup procedure by triggers related to IP-level bandwidth/QoS request from end hosts. The "resource management entity" in the host or router, which has received bandwidth/QoS requests from applications or adjacent nodes may choose to accommodate the requested IP flow to an existing VC or choose to allocate a new Dedicated-VC for the requested IP flow. Selecting the latter choice at each router can correspond to the trigger for constituting a Bypass-pipe. When both an incoming VC and an outgoing VC (or VCs) are dedicated to the same IP flow(s), those VCs can be concatenated at the CSR (ATM cut-through) to constitute a Bypass- pipe. Bandwidth for the Bypass-pipe (namely, individual VCs constituting the Bypass-pipe) in this case would be determined based on the bandwidth/QoS requirements by the end host which is conveyed by, e.g., RSVP messages. The ATM service classes; e.g., CBR/VBR/ABR; that would be selected depends on the IP-level service classes requested by the end hosts. Bypass-pipe provision for the purpose of b) will surely be beneficial in the near future when related IP-level resource reservation protocol will become available as well as when definitions of individual service classes and flow specs offered to applications become clear. On the other hand, Bypass-pipe setup for the purpose of a) may be beneficial right now since it does not require availability of IP-level resource reservation protocols. In that sense, a) can be regarded as a kind of short-term use while b) is a long-term use.Katsube, et. al. Informational [Page 10]RFC 2098 Toshiba's Router Extension for ATM February 19974.3 Variations of Bypass-pipe Control Architecture A number of variations regarding Bypass-pipe control architecture are introduced. Items which are related to architectural variations are; o Ways of providing Dedicated-VCs o Channels for Bypass-pipe control message transfer o Bypass-pipe control procedures Each of these items are discussed below.4.3.1 Ways of Providing Dedicated-VCs There are roughly three alternatives regarding the way of providing Dedicated-VCs in individual IP subnets as components of a Bypass- pipe.a) On-demand SVC setup Dedicated-VCs are set up in individual IP subnets each time you want to set up a Bypass-pipe through the ATM signaling procedure.b) Picking up one from a bunch of (semi-)PVCs Several VCs are set up beforehand between CSR and CSR, or CSR and other ATM-attached nodes (hosts/router) in each IP subnet. Unused VC is picked up as a Dedicated-VC from these PVCs in each IP subnet when a Bypass-pipe is set up.c) Picking up one VCI in PVP/SVP PVPs or SVPs are set up between CSR and CSR, or CSR and other ATM- attached nodes (hosts/routers) in each IP subnet. PVPs would be set up as a router/host initialization procedure, while SVPs, on the other hand, would be set up through ATM signaling when the first VC (either Default- or Dedicated-) setup request is initiated by either of some peer nodes. Then, Unused VCI value is picked up as a Dedicated-VC in the PVP/SVP in each IP subnet when a Bypass-pipe is set up. The SVP can be released through ATM signaling when no VCI value is in active state. The best choice will be a) with regard to efficient network resource usage. However, you may go through three steps, ATMARP (for unicast [RFC1577] or multicast [IPMC96] in each IP subnet), SVC setup (in each IP subnet) and exchange of Bypass-pipe control message in this case. Whether a) is practical choice or not will depend on whetherKatsube, et. al. Informational [Page 11]RFC 2098 Toshiba's Router Extension for ATM February 1997 you can allow larger Bypass-pipe setup time due to three-step procedure mentioned above, or whether you can send datagrams over Default-VCs in a hop-by-hop manner while waiting for the Bypass-pipe set up. In the case of b) or c), the issue of Bypass-pipe setup time will be improved since SVC setup step can be skipped. In b), each node (CSR or ATM-attached host/router) should specify some traffic descriptors even for unused VCs, and the ATM datalink should reserve its desired resource (such as VCI value and bandwidth) for them. In addition, the ATM datalink may have to carry out UPC functions for those unused VCs. Such burden would be reduced when you use UBR-PVCs and set peak cell rate for each of them equal to link rate, but bandwidth/QoS for the Bypass-pipe is not provided in this case. In c), on the other hand, traffic descriptors which should be specified by each node for the ATM datalink is not each VC's but VP's only. Resource reservations for individual VCs will be carried out not as a functionality of the ATM datalink but of each CSR or ATM-attached host/router if necessary. A functionality which need to be provided by the ATM datalink is control of VPs' bandwidth only such as UPC and dynamic bandwidth negotiation if it would be widely available.4.3.2 Channels for Bypass-pipe Control Message Transfer There are several alternatives regarding the channels for managing (setting up, releasing, and possibly changing the route of) a Bypass-pipe. This subsection explains these alternatives and discusses their properties. Three alternatives are discussed, Inband control message, Outband control message, and use of ATM signaling.i) Inband Control Message When setting up a Bypass-pipe, control messages are transmitted over a Dedicated-VC which will eventually be used as a component of the Bypass-pipe. These messages are handled at each CSR, and similar messages are transmitted to the next-hop node over a Dedicated-VC along the selected route (based on IP routing table). Unlike outband message protocol described in ii), each message does not have to indicate a Dedicated-VC which will be used since the message itself is carried over "that" VC. The inband control message can be either "datagram dedicated for Bypass-pipe control" or "actual IP datagram" sent by user application. Actual IP datagrams can be transmitted over Bypass-pipe after it has been set up in the former case. In the latter case, on the other hand, the first (or several) IP datagram(s) received fromKatsube, et. al. Informational [Page 12]RFC 2098 Toshiba's Router Extension for ATM February 1997
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -