📄 rfc2678.txt
字号:
RFC 2678 IPPM Metrics for Measuring Connectivity September 19996.4. Definition: Address Src has *Type-P1-P2-Interval-Temporal-Connectivity* to address Dst during the interval [T, T+dT] if there exist times T1 and T2, and time intervals dT1 and dT2, such that: + T1, T1+dT1, T2, T2+dT2 are all in [T, T+dT]. + T1+dT1 <= T2. + At time T1, Src has Type-P1 instantanous connectivity to Dst. + At time T2, Dst has Type-P2 instantanous connectivity to Src. + dT1 is the time taken for a Type-P1 packet sent by Src at time T1 to arrive at Dst. + dT2 is the time taken for a Type-P2 packet sent by Dst at time T2 to arrive at Src.6.5. Discussion: This metric defines "generally useful" connectivity -- Src can send a packet to Dst that elicits a response. Because many applications utilize different types of packets for forward and reverse traffic, it is possible (and likely) that the desired responses to a Type-P1 packet will be of a different type Type-P2. Therefore, in this metric we allow for different types of packets in the forward and reverse directions.6.6. Methodologies: Here we sketch a class of methodologies for estimating Type-P1-P2- Interval-Temporal-Connectivity. It is a class rather than a single methodology because the particulars will depend on the types P1 and P2.6.6.1. Inputs: + Types P1 and P2, addresses A1 and A2, interval [T, T+dT]. + N, the number of packets to send as probes for determining connectivity. + W, the "waiting time", which bounds for how long it is useful to wait for a reply to a packet. Required: W <= 255, dT > W.6.6.2. Recommended values: dT = 60 seconds. W = 10 seconds. N = 20 packets.Mahdavi & Paxson Standards Track [Page 6]RFC 2678 IPPM Metrics for Measuring Connectivity September 19996.6.3. Algorithm: + Compute N *sending-times* that are randomly, uniformly distributed over [T, T+dT-W]. + At each sending time, transmit from A1 a well-formed packet of type P1 to A2. + Inspect incoming network traffic to A1 to determine if a successful reply is received. The particulars of doing so are dependent on types P1 & P2, discussed below. If any successful reply is received, the value of the measurement is "true". At this point, the measurement can terminate. + If no successful replies are received by time T+dT, the value of the measurement is "false".6.6.4. Discussion: The algorithm is inexact because it does not (and cannot) probe temporal connectivity at every instant in time between [T, T+dT]. The value of N trades off measurement precision against network measurement load. The state-of-the-art in Internet research does not yet offer solid guidance for picking N. The values given above are just guidelines.6.6.5. Specific methodology for TCP: A TCP-port-N1-port-N2 methodology sends TCP SYN packets with source port N1 and dest port N2 at address A2. Network traffic incoming to A1 is interpreted as follows: + A SYN-ack packet from A2 to A1 with the proper acknowledgement fields and ports indicates temporal connectivity. The measurement terminates immediately with a value of "true". {Comment: if, as a side effect of the methodology, a full TCP connection has been established between A1 and A2 -- that is, if A1's TCP stack acknowledges A2's SYN-ack packet, completing the three-way handshake -- then the connection now established between A1 and A2 is best torn down using the usual FIN handshake, and not using a RST packet, because RST packets are not reliably delivered. If the three-way handshake is not completed, however, which will occur if the measurement tool on A1 synthesizes its own initial SYN packet rather than going through A1's TCP stack, then A1's TCP stack will automatically terminate the connection in a reliable fashion as A2 continues transmitting the SYN-ack in an attempt to establish the connection. Finally, we note that using A1's TCP stack to conduct the measurement complicates the methodology in that the stack may retransmit the initial SYN packet, altering the number of probe packets sent.}Mahdavi & Paxson Standards Track [Page 7]RFC 2678 IPPM Metrics for Measuring Connectivity September 1999 + A RST packet from A2 to A1 with the proper ports indicates temporal connectivity between the addresses (and a *lack* of service connectivity for TCP-port-N1-port-N2 - something that probably should be addressed with another metric). + An ICMP port-unreachable from A2 to A1 indicates temporal connectivity between the addresses (and again a *lack* of service connectivity for TCP-port-N1-port-N2). {Comment: TCP implementations generally do not need to send ICMP port- unreachable messages because a separate mechanism is available (sending a RST). However, RFC 1122 states that a TCP receiving an ICMP port-unreachable MUST treat it the same as the equivalent transport-level mechanism (for TCP, a RST).} + An ICMP host-unreachable or network-unreachable to A1 (not necessarily from A2) with an enclosed IP header matching that sent from A1 to A2 *suggests* a lack of temporal connectivity. If by time T+dT no evidence of temporal connectivity has been gathered, then the receipt of the ICMP can be used as additional information to the measurement value of "false". {Comment: Similar methodologies are needed for ICMP Echo, UDP, etc.}7. Acknowledgments The comments of Guy Almes, Martin Horneffer, Jeff Sedayao, and Sean Shapira are appreciated.8. Security Considerations As noted in RFC 2330, active measurement techniques, such as those defined in this document, can be abused for denial-of-service attacks disguised as legitimate measurement activity. Furthermore, testing for connectivity can be used to probe firewalls and other security mechnisms for weak spots.9. References [RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, June 1995. [RFC1122] Braden, R., Editor, "Requirements for Internet Hosts -- Communication Layers", STD, 3, RFC 1122, October 1989. [RFC2330] Paxson, V., Almes, G., Mahdavi, J. and M. Mathis, "Framework for IP Performance Metrics", RFC 2330, May 1998. [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.Mahdavi & Paxson Standards Track [Page 8]RFC 2678 IPPM Metrics for Measuring Connectivity September 199910. Authors' Addresses Jamshid Mahdavi Pittsburgh Supercomputing Center 4400 5th Avenue Pittsburgh, PA 15213 USA EMail: mahdavi@psc.edu Vern Paxson MS 50A-3111 Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Phone: +1 510/486-7504 EMail: vern@ee.lbl.govMahdavi & Paxson Standards Track [Page 9]RFC 2678 IPPM Metrics for Measuring Connectivity September 199911. Full Copyright Statement Copyright (C) The Internet Society (1999). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Mahdavi & Paxson Standards Track [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -