📄 rfc2895.txt
字号:
The DESCRIPTION clause MUST be present in all protocol-identifier macro declarations.3.2.9. Mapping of the CHILDREN Clause The CHILDREN clause provides a description of child protocols for protocols which support them. It has three sub-sections: - Details on the field(s)/value(s) used to select the child protocol, and how that selection process is performed - Details on how the value(s) are encoded in the protocol identifier octet string - Details on how child protocols are named with respect to their parent protocol label(s) The CHILDREN clause MUST be present in all protocol-identifier macro declarations in which the 'hasChildren(0)' BIT is set in the ATTRIBUTES clause.Bierman, et al. Standards Track [Page 19]RFC 2895 RMON PI Reference August 20003.2.10. Mapping of the ADDRESS-FORMAT Clause The ADDRESS-FORMAT clause provides a description of the OCTET-STRING format(s) used when encoding addresses. This clause MUST be present in all protocol-identifier macro declarations in which the 'addressRecognitionCapable(1)' BIT is set in the ATTRIBUTES clause.3.2.11. Mapping of the DECODING Clause The DECODING clause provides a description of the decoding procedure for the specified protocol. It contains useful decoding hints for the implementor, but SHOULD NOT over-replicate information in documents cited in the REFERENCE clause. It might contain a complete description of any decoding information required. For 'extensible' protocols ('hasChildren(0)' BIT set) this includes offset and type information for the field(s) used for child selection as well as information on determining the start of the child protocol. For 'addressRecognitionCapable' protocols this includes offset and type information for the field(s) used to generate addresses. The DECODING clause is optional, and MAY be omitted if the REFERENCE clause contains pointers to decoding information for the specified protocol.3.2.12. Mapping of the REFERENCE Clause If a publicly available reference document exists for this protocol it SHOULD be listed here. Typically this will be a URL if possible; if not then it will be the name and address of the controlling body. The CHILDREN, ADDRESS-FORMAT, and DECODING clauses SHOULD limit the amount of information which may currently be obtained from an authoritative document, such as the Assigned Numbers document [RFC1700]. Any duplication or paraphrasing of information should be brief and consistent with the authoritative document. The REFERENCE clause is optional, but SHOULD be implemented if an authoritative reference exists for the protocol (especially for standard protocols).Bierman, et al. Standards Track [Page 20]RFC 2895 RMON PI Reference August 20003.3. Evaluating an Index of the ProtocolDirTable The following evaluation is done after a protocolDirTable INDEX value has been converted into two OCTET STRINGs according to the INDEX encoding rules specified in the SMI [RFC1902]. Protocol-identifiers are evaluated left to right, starting with the protocolDirID, which length MUST be evenly divisible by four. The protocolDirParameters length MUST be exactly one quarter of the protocolDirID string length. Protocol-identifier parsing starts with the base layer identifier, which MUST be present, and continues for one or more upper layer identifiers, until all OCTETs of the protocolDirID have been used. Layers MUST NOT be skipped, so identifiers such as 'SNMP over IP' or 'TCP over ether2' can not exist. The base-layer-identifier also contains a 'special function identifier' which may apply to the rest of the protocol identifier. Wild-carding at the base layer within a protocol encapsulation is the only supported special function at this time. (See section 4.1.1.2 for details.) After the protocol-identifier string (which is the value of protocolDirID) has been parsed, each octet of the protocol-parameters string is evaluated, and applied to the corresponding protocol layer. A protocol-identifier label MAY map to more than one value. For instance, 'ip' maps to 5 distinct values, one for each supported encapsulation. (see the 'IP' section under 'L3 Protocol Identifiers' in the RMON Protocol Identifier Macros document [RFC2896]). It is important to note that these macros are conceptually expanded at implementation time, not at run time. If all the macros are expanded completely by substituting all possible values of each label for each child protocol, a list of all possible protocol-identifiers is produced. So 'ip' would result in 5 distinct protocol-identifiers. Likewise each child of 'ip' would map to at least 5 protocol-identifiers, one for each encapsulation (e.g. ip over ether2, ip over LLC, etc.).Bierman, et al. Standards Track [Page 21]RFC 2895 RMON PI Reference August 20004. Base Layer Protocol Identifier Macros The following PROTOCOL IDENTIFIER macros can be used to construct protocolDirID and protocolDirParameters strings. An identifier is encoded by constructing the base-identifier, then adding one layer-identifier for each encapsulated protocol. Refer to the RMON Protocol Identifier Macros document [RFC2896] for a listing of the non-base layer PI macros published by the working group. Note that other PI macro documents may exist, and it should be possible for an implementor to populate the protocolDirTable without the use of the PI Macro document [RFC2896].4.1. Base Identifier Encoding The first layer encapsulation is called the base identifier and it contains optional protocol-function information and the base layer (e.g. MAC layer) enumeration value used in this protocol identifier. The base identifier is encoded as four octets as shown in figure 2. Fig. 2 base-identifier format +---+---+---+---+ | | | | | | f |op1|op2| m | | | | | | +---+---+---+---+ octet | 1 | 1 | 1 | 1 | count The first octet ('f') is the special function code, found in table 4.1. The next two octets ('op1' and 'op2') are operands for the indicated function. If not used, an operand must be set to zero. The last octet, 'm', is the enumerated value for a particular base layer encapsulation, found in table 4.2. All four octets are encoded in network-byte-order.4.1.1. Protocol Identifier Functions The base layer identifier contains information about any special functions to perform during collections of this protocol, as well as the base layer encapsulation identifier. The first three octets of the identifier contain the function code and two optional operands. The fourth octet contains the particular base layer encapsulation used in this protocol (fig. 2).Bierman, et al. Standards Track [Page 22]RFC 2895 RMON PI Reference August 2000 Table 4.1 Assigned Protocol Identifier Functions ------------------------------------------------- Function ID Param1 Param2 ---------------------------------------------------- none 0 not used (0) not used (0) wildcard 1 not used (0) not used (0)4.1.1.1. Function 0: None If the function ID field (1st octet) is equal to zero, the 'op1' and 'op2' fields (2nd and 3rd octets) must also be equal to zero. This special value indicates that no functions are applied to the protocol identifier encoded in the remaining octets. The identifier represents a normal protocol encapsulation.4.1.1.2. Function 1: Protocol Wildcard Function The wildcard function (function-ID = 1), is used to aggregate counters, by using a single protocol value to indicate potentially many base layer encapsulations of a particular network layer protocol. A protocolDirEntry of this type will match any base-layer encapsulation of the same network layer protocol. The 'op1' field (2nd octet) is not used and MUST be set to zero. The 'op2' field (3rd octet) is not used and MUST be set to zero. Each wildcard protocol identifier MUST be defined in terms of a 'base encapsulation'. This SHOULD be as 'standard' as possible for interoperability purposes. The lowest possible base layer value SHOULD be chosen. So, if an encapsulation over 'ether2' is permitted, than this should be used as the base encapsulation. If not then an encapsulation over LLC should be used, if permitted. And so on for each of the defined base layers. It should be noted that an agent does not have to support the non- wildcard protocol identifier over the same base layer. For instance a token ring only device would not normally support IP over the ether2 base layer. Nevertheless it should use the ether2 base layer for defining the wildcard IP encapsulation. The agent MAY also support counting some or all of the individual encapsulations for the same protocols, in addition to wildcard counting. Note that the RMON-2 MIB [RFC2021] does not require that agents maintain counters for multiple encapsulations of the same protocol. It is an implementation-specific matter as to how an agent determines which protocol combinations to allow in the protocolDirTable at any given time.Bierman, et al. Standards Track [Page 23]RFC 2895 RMON PI Reference August 20004.2. Base Layer Protocol Identifiers The base layer is mandatory, and defines the base encapsulation of the packet and any special functions for this identifier. There are no suggested protocolDirParameters bits for the base layer. The suggested value for the ProtocolDirDescr field for the base layer is given by the corresponding "Name" field in the table 4.2 below. However, implementations are only required to use the appropriate integer identifier values. For most base layer protocols, the protocolDirType field should contain bits set for the 'hasChildren(0)' and ' addressRecognitionCapable(1)' attributes. However, the special 'ianaAssigned' base layer should have no parameter or attribute bits set. By design, only 255 different base layer encapsulations are supported. There are five base encapsulation values defined at this time. Very few new base encapsulations (e.g. for new media types) are expected to be added over time. Table 4.2 Base Layer Encoding Values -------------------------------------- Name ID ------------------ ether2 1 llc 2 snap 3 vsnap 4 ianaAssigned 5 -- Ether2 Encapsulationether2 PROTOCOL-IDENTIFIER PARAMETERS { } ATTRIBUTES { hasChildren(0), addressRecognitionCapable(1) } DESCRIPTION "DIX Ethernet, also called Ethernet-II." CHILDREN "The Ethernet-II type field is used to select child protocols. This is a 16-bit field. Child protocols are deemed to start at the first octet after this type field.Bierman, et al. Standards Track [Page 24]RFC 2895 RMON PI Reference August 2000 Children of this protocol are encoded as [ 0.0.0.1 ], the protocol identifier for 'ether2' followed by [ 0.0.a.b ] where 'a' and 'b' are the network byte order encodings of the high order byte and low order byte of the Ethernet-II type value. For example, a protocolDirID-fragment value of: 0.0.0.1.0.0.8.0 defines IP encapsulated in ether2. Children of ether2 are named as 'ether2' followed by the type field value in hexadecimal. The above example would be declared as: ether2 0x0800" ADDRESS-FORMAT "Ethernet addresses are 6 octets in network order." DECODING "Only type values greater than 1500 decimal indicate Ethernet-II frames; lower values indicate 802.3 encapsulation (see below)." REFERENCE "The authoritative list of Ether Type values is identified by the URL: ftp://ftp.isi.edu/in-notes/iana/assignments/ethernet-numbers" ::= { 1 } -- LLC Encapsulationllc PROTOCOL-IDENTIFIER PARAMETERS { } ATTRIBUTES { hasChildren(0),
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -