📄 rfc2895.txt
字号:
'interesting' protocols on which the intended applications depend.2.3. Relationship to the RMON Protocol Identifier Macros Document The original RMON Protocol Identifiers document [RFC2074] contains the protocol directory reference material, as well as many examples of protocol identifier macros. These macros have been moved to a separate document called the RMON Protocol Identifier Macros document [RFC2896]. This will allow the normative text (this document) to advance on the standards track with the RMON-2 MIB [RFC2021], while the collection of PI macros is maintained in an Informational RFC. The PI Macros document is intentionally separated from this document to allow updates to the list of published PI macros without any republication of MIB objects or encoding rules. Protocol Identifier macros submitted from the RMON working group and community at large (to the RMONMIB WG mailing list at 'rmonmib@ietf.org') will be collected, screened by the RMONMIB working group, and (if approved) added to a subsequent version of the PI Macros document. Macros submissions will be collected in the IANA's MIB files under the directory "ftp://ftp.isi.edu/mib/rmonmib/rmon2_pi_macros/" and in the RMONMIB working group mailing list message archive file www.ietf.org/mail-archive/working- groups/rmonmib/current/maillist.htm.2.4. Relationship to the ATM-RMON MIB The ATM Forum has standardized "Remote Monitoring MIB Extensions for ATM Networks" (ATM-RMON MIB) [AF-NM-TEST-0080.000], which provides RMON-like stats, host, matrix, and matrixTopN capability for NSAP address-based (ATM Adaption Layer 5, AAL-5) cell traffic.2.4.1. Port Aggregation It it possible to correlate ATM-RMON MIB data with packet-based RMON-2 [RFC2021] collections, but only if the ATM-RMON 'portSelGrpTable' and 'portSelTable' are configured to provide the same level of port aggregation as used in the packet-based collection. This will require an ATM-RMON 'portSelectGroup' to contain a single port, in the case of traditional RMON dataSources.Bierman, et al. Standards Track [Page 7]RFC 2895 RMON PI Reference August 20002.4.2. Encapsulation Mappings The RMON PI document does not contain explicit PI macro support for "Multiprotocol Encapsulation over ATM Adaptation Layer 5" [RFC1483], or ATM Forum "LAN Emulation over ATM" (LANE) [AF-LANE-0021.000]. Instead, a probe must 'fit' the ATM encapsulation to one of the base layers defined in this document (i.e., llc, snap, or vsnap), regardless of how the raw data is obtained by the agent (e.g., VC- muxing vs. LLC-muxing, or routed vs. bridged formats). See section 3.2 for details on identifying and decoding a particular base layer. An NMS can determine some of the omitted encapsulation details by examining the interface type (ifType) of the dataSource for a particular RMON collection: RFC 1483 dataSource ifTypes: - aal5(49) LANE dataSource ifTypes: - aflane8023(59) - aflane8025(60) These dataSources require implementation of the ifStackTable from the Interfaces MIB [RFC2233]. It is possible that some implementations will use dataSource values which indicate an ifType of 'atm(37)' (because the ifStackTable is not supported), however this is strongly discouraged by the RMONMIB WG.2.4.3. Counting ATM Traffic in RMON-2 Collections The RMON-2 Application Layer (AL) and Network Layer (NL) (host/matrix/topN) tables require that octet counters be incremented by the size of the particular frame, not by the size of the frame attributed to a given protocol. Probe implementations must use the AAL-5 frame size (not the AAL-5 payload size or encapsulated MAC frame size) as the 'frame size' for the purpose of incrementing RMON-2 octet counters (e.g., 'nlHostInOctets', 'alHostOutOctets'). The RMONMIB WG has not addressed issues relating to packet capture of AAL-5 based traffic. Therefore, it is an implementation-specific matter whether padding octets (i.e., RFC 1483 VC-muxed, bridged 802.3 or 802.5 traffic, or LANE traffic) are represented in the RMON-1 'captureBufferPacketData' MIB object. Normally, the first octet of the captured frame is the first octet of the destination MAC address (DA).Bierman, et al. Standards Track [Page 8]RFC 2895 RMON PI Reference August 20002.5. Relationship to Other MIBs The RMON Protocol Identifiers Reference document is intended for use with the protocolDirTable within the RMON MIB. It is not relevant to any other MIB, or intended for use with any other MIB.3. Protocol Identifier Encoding The protocolDirTable is indexed by two OCTET STRINGs, protocolDirID and protocolDirParameters. To encode the table index, each variable- length string is converted to an OBJECT IDENTIFIER fragment, according to the encoding rules in section 7.7 of RFC 1902 [RFC1902]. Then the index fragments are simply concatenated. (Refer to figures 1a - 1d below for more detail.) The first OCTET STRING (protocolDirID) is composed of one or more 4- octet "layer-identifiers". The entire string uniquely identifies a particular node in the protocol encapsulation tree. The second OCTET STRING, (protocolDirParameters) which contains a corresponding number of 1-octet protocol-specific parameters, one for each 4-octet layer- identifier in the first string. A protocol layer is normally identified by a single 32-bit value. Each layer-identifier is encoded in the ProtocolDirID OCTET STRING INDEX as four sub-components [ a.b.c.d ], where 'a' - 'd' represent each byte of the 32-bit value in network byte order. If a particular protocol layer cannot be encoded into 32 bits, then it must be defined as an 'ianaAssigned' protocol (see below for details on IANA assigned protocols). The following figures show the differences between the OBJECT IDENTIFIER and OCTET STRING encoding of the protocol identifier string. Fig. 1a protocolDirTable INDEX Format ----------------------------- +---+--------------------------+---+---------------+ | c ! | c ! protocolDir | | n ! protocolDirID | n ! Parameters | | t ! | t ! | +---+--------------------------+---+---------------+Bierman, et al. Standards Track [Page 9]RFC 2895 RMON PI Reference August 2000 Fig. 1b protocolDirTable OCTET STRING Format ------------------------------------ protocolDirID +----------------------------------------+ | | | 4 * N octets | | | +----------------------------------------+ protocolDirParameters +----------+ | | | N octets | | | +----------+ N is the number of protocol-layer-identifiers required for the entire encapsulation of the named protocol. Note that the layer following the base layer usually identifies a network layer protocol, but this is not always the case, (most notably for children of the 'vsnap' base-layer). Fig. 1c protocolDirTable INDEX Format Example ------------------------------------- protocolDirID protocolDirParameters +---+--------+--------+--------+--------+---+---+---+---+---+ | c | proto | proto | proto | proto | c |par|par|par|par| | n | base | L(B+1) | L(B+2) | L(B+3) | n |ba-| L3| L4| L5| | t |(+flags)| L3 | L4 | L5 | t |se | | | | +---+--------+--------+--------+--------+---+---+---+---+---+ subOID | 1 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | count When encoded in a protocolDirTable INDEX, each of the two strings must be preceded by a length sub-component. In this example, N equals '4', the first 'cnt' field would contain the value '16', and the second 'cnt' field would contain the value '4'.Bierman, et al. Standards Track [Page 10]RFC 2895 RMON PI Reference August 2000 Fig. 1d protocolDirTable OCTET STRING Format Example -------------------------------------------- protocolDirID +--------+--------+--------+--------+ | proto | proto | proto | proto | | base | L3 | L4 | L5 | | | | | | +--------+--------+--------+--------+ octet | 4 | 4 | 4 | 4 | count protocolDirParameters +---+---+---+---+ |par|par|par|par| |ba-| L3| L4| L5| |se | | | | +---+---+---+---+ octet | 1 | 1 | 1 | 1 | count Although this example indicates four encapsulated protocols, in practice, any non-zero number of layer-identifiers may be present, theoretically limited only by OBJECT IDENTIFIER length restrictions, as specified in section 3.5 of RFC 1902 [RFC1902].3.1. ProtocolDirTable INDEX Format Examples The following PI identifier fragments are examples of some fully encoded protocolDirTable INDEX values for various encapsulations. -- HTTP; fragments counted from IP and above ether2.ip.tcp.www-http = 16.0.0.0.1.0.0.8.0.0.0.0.6.0.0.0.80.4.0.1.0.0 -- SNMP over UDP/IP over SNAP snap.ip.udp.snmp = 16.0.0.0.3.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0 -- SNMP over IPX over SNAP snap.ipx.snmp = 12.0.0.0.3.0.0.129.55.0.0.144.15.3.0.0.0 -- SNMP over IPX over raw8023 ianaAssigned.ipxOverRaw8023.snmp = 12.0.0.0.5.0.0.0.1.0.0.144.15.3.0.0.0Bierman, et al. Standards Track [Page 11]RFC 2895 RMON PI Reference August 2000 -- IPX over LLC llc.ipx = 8.0.0.0.2.0.0.0.224.2.0.0 -- SNMP over UDP/IP over any link layer ether2.ip.udp.snmp 16.1.0.0.1.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0 -- IP over any link layer; base encoding is IP over ether2 ether2.ip 8.1.0.0.1.0.0.8.0.2.0.0 -- AppleTalk Phase 2 over ether2 ether2.atalk 8.0.0.0.1.0.0.128.155.2.0.0 -- AppleTalk Phase 2 over vsnap vsnap.apple-oui.atalk 12.0.0.0.4.0.8.0.7.0.0.128.155.3.0.0.03.2. Protocol Identifier Macro Format The following example is meant to introduce the protocol-identifier macro. This macro-like construct is used to represent both protocols and protocol-variants. If the 'VariantOfPart' component of the macro is present, then the macro represents a protocol-variant instead of a protocol. This clause is currently used only for IANA assigned protocols, enumerated under the 'ianaAssigned' base-layer. The VariantOfPart component MUST be present for IANA assigned protocols.3.2.1. Lexical Conventions The PI language defines the following keywords: ADDRESS-FORMAT ATTRIBUTES CHILDREN DECODING DESCRIPTION PARAMETERS PROTOCOL-IDENTIFIER REFERENCE VARIANT-OFBierman, et al. Standards Track [Page 12]RFC 2895 RMON PI Reference August 2000 The PI language defines the following punctuation elements: { left curly brace } right curly brace ( left parenthesis ) right parenthesis , comma ::= two colons and an equal sign -- two dashes3.2.2. Notation for Syntax Descriptions
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -