📄 rfc1768.txt
字号:
While error reports are permitted on multicast PDUs, a PDU with a group Network address in the source address field shall not be responded to with an Error Report. This is to ensure that a multicast PDU does not generate another multicast PDU. If the source address is identified as a group address then an error report PDU shall not be generated and the original PDU shall be discarded.5.3.6 Source routing functions No source routing capability is provided for multicast PDU transfer. The NS provider shall not accept a multicast PDU with source route parameters.5.4 Scope control function5.4.1 Overview The scope control function is an option for multicast PDU forwarding only. The scope control function allows the originator to limit the forwarding of the multicast PDU. The scope control function provides the capability to limit the relaying of a particular PDU based on the individual Network addressing hierarchy and/or limit the amount of multicast expansion which can take place. In cases where both forms of scope control are applied to the same PDU, forwarding will cease once either has reached its scope control limit.5.4.2 Prefix Based Scope Control The prefix based scope control function allows the originator to specify a specific set of address prefixes where the multicast forwarding of a PDU by an Intermediate System occurs only if one of the prefixes matches the Network Entity Title (NET) of theMarlow [Page 11]RFC 1768 CLNP Multicasting March 1995 Intermediate System. Prefix based scope control may be selected only by the originator of a PDU. Prefix based scope control is accomplished using one or more address prefixes held in a parameter within the options part of the PDU header. The length of this parameter is determined by the originating network entity, and does not change during the lifetime of a PDU. When an Intermediate System receives a multicast PDU containing a prefix based scope control parameter, forwarding is only performed if every octet of one of the prefixes contained in the prefix based scope control parameter matches that Intermediate System's NET, starting from the beginning of its NET. If no such prefix match exists, the Intermediate System discards the PDU. The error reporting function shall not be invoked upon PDU discard.5.4.3 Radius Scope Control The radius scope control function allows the originator to specify a maximum logical distance where multicast expansion can occur. It is closely associated with the header format analysis function. Each IS receiving a multicast PDU which is capable of expanding and which contains a Radius Scope Control parameter, decrements the Radius Scope Control field in the PDU by an administratively set amount between 0 and the maximum value of the field. An IS, when it decrements the Radius Scope Control field, shall place a value of 0 into this field if its current value is less than the amount it is to decrement by. This function determines whether the PDU received may be forwarded or whether its Radius has been reached, in which case it shall be discarded. An Intermediate System shall not forward a multicast PDU containing a Radius Scope Control parameter with a value of 0. The error reporting function shall not be invoked upon PDU discard.5.4.3.1 Radius Scope Control Example The Radius Scope Control parameter is useful where policies have been established across the potential forwarding path. One possible policy for Internet use is for multicast capable routers to treat this field as a hop count within a domain (decrement by one unit) and for inter-domain routers to either decrement this field to an even multiple of 256 when crossing domains where prior agreements have been made or decrement this field to 0 (i.e., discard the packet) for other domains.Marlow [Page 12]RFC 1768 CLNP Multicasting March 19955.5 Structure and Encoding of PDUs Multicast transmission is accomplished via the transfer of Multicast Data (MD) PDUs. The PDU type code for a MD PDU is "1 1 1 0 1". The format of the MD PDU is identical to that of the Data (DT) PDU. The MD and DT PDU may contain the same optional parameters with the following exceptions: (1)The source routing parameter is permitted within DT PDUs but not MD PDUs; and (2)The scope control parameter is permitted within MD PDUs but not DT PDUs.5.6 Optional parameters for multicast support5.6.1 Prefix Based Scope Control The prefix based scope control parameter specifies one or more address prefixes for which Intermediate System forwarding requires a match of one of the contained prefixes with the beginning of the Intermediate System's NET. Parameter Code: 1100 0100 Parameter Length: variable Parameter Value: a concatenation of address prefix entries The parameter value contains an address prefix list. The list consists of variable length address prefix entries. The first octet of each entry gives the length of the address prefix denominated in bits that comprises the remainder of the entry. If the length field does not specify an integral number of octets then the prefix entry is followed by enough trailing zeroes to make the end of the entry fall on an octet boundary. The list must contain at least one entry. The prefix shall end on a boundary that is legal in the abstract syntax of the address family from which it is derived. For example, the encoding of a prefix whose DSP is expressed in decimal syntax must end on a semi-octet boundary, while the encoding of a prefix whose DSP is expressed in binary syntax can end on an arbitrary bit boundary. If the end of the prefix falls within the IDP, then the prefix must end on a semi-octet boundary and must not contain any padding characters. Note: The length of the prefix based scope control parameter is determined by the originator of the PDU and is not changed during the lifetime of the PDU.Marlow [Page 13]RFC 1768 CLNP Multicasting March 19955.6.1.1 Prefix matching A prefix that extends into the DSP shall be compared directly against the encoded NET address, including any padding characters that may be present. A prefix which does not extend into the DSP shall be compared against the derived quantity NET', which is obtained from the NET address by removing all padding characters (as defined by the binary encoding process of ISO 8348). The existence of a match shall be determined as follows: a) If the encoded NET (or NET') contains fewer bits than the pre- fix, then there is no match. b) If the encoded NET (or NET') contains at least as many bits as the prefix, and all bits of the prefix are identical to the corresponding leading bits of the encoded NET (or NET'), there is a match. Otherwise, there is no match.5.6.2 Radius Scope Control The radius scope control parameter specifies the logical distance that a multicast PDU can be forwarded. Parameter Code: 1100 0110 Parameter Length: two octets Parameter Value: two octets which represents the remaining distance, that the PDU can be forwarded, in administratively set units.5.7 Provision of the Underlying Service For a subnetwork that provides an inherent multicast capability, it is the functionality of the SNDCF to provide the mapping between group Network addresses and the corresponding addressing capability of the subnetwork.5.8 Conformance All of the extensions provided to the functions to support multicast capability are optional. For an End System or Intermediate System which is not multicast capable these extensions are not applicable. An implementation claiming conformance as a multicast capable End System shall meet all of the requirements for an End System which is not multicast capable and also provide all of the multicast extensions provided here. An implementation claiming conformance as aMarlow [Page 14]RFC 1768 CLNP Multicasting March 1995 multicast capable Intermediate System shall meet all of the requirements for an Intermediate System which is not multicast capable and also provide all of the multicast extensions provided here.6. Extensions to the ES-IS Routeing Protocol This section provides optional extensions to the ES-IS Routeing Protocol [ES-IS], ISO 9542 to support the transfer of multicast PDUs. It is an explicit goal of this specification that ESs and ISs, some of which will have multicast capabilities and some without, will be able to fully function on the same subnetworks. This specification does not change any aspect of a currently defined (i.e., non- multicast) ISO 9542 implementation, it adds new optional functionality not modifying current functionality. Two basic functions are provided: multicast announcement and multicast address mapping.6.1 Overview of the protocol6.1.1 Operation of ESs receiving multicast PDUs ESs, upon initialization and periodically thereafter, will construct End System Group Hello (ESGH) PDUs identifying, by particular group Network addresses, the multicast PDUs it wishes to receive. The ES will periodically originate (announce) these ESGH PDUs on the subnetwork it wishes to receive these on. Reporting the same group Network address on multiple subnetworks may result in the reception of duplicate PDUs. ES-IS operations related to requesting the same group Network address on multiple subnetworks are handled totally independently (e.g., using different logical timers,...). It is permitted for an ES to report a number of group Network addresses in the same ESGH PDU. The only restrictions placed on providing multiple group Network addresses within the same ESGH PDU are that all packets requested are to be received on the same subnet, with the same holding time and that the ESGH PDU be of length equal to or less that its maximum packet size constraint. Note that each group Network address in the ESGH PDU is paired with its own SNPA (subnetwork point of attachment) address. An ES will always have an SNPA address associated with each of its active group Network addresses. An SNPA address is a subnetwork address, in the case of a subnetwork which uses IEEE 802 addresses the SNPA address is a 48 bit IEEE 802 MAC (media access control) address. Of particular interest is the address used to mark the destination group. For a subnetwork using IEEE 802 addressing a group SNPA address uses a particular bit position to "mark" group SNPA addresses.Marlow [Page 15]RFC 1768 CLNP Multicasting March 1995 Upon initialization the ES may have static SNPA address associations (Pre-configured SNPA addresses). For any group Network address without a Pre-configured SNPA address that the ES wishes to receive, the ES will associate the "All Multicast Capable End Systems" SNPA address. Upon receiving a Multicast Address Mapping (MAM) PDU containing a group Network address that the ES is announcing, the ES will use the SNPA address pairing contained in the MAM PDU for that group Network address. Upon the expiration of the Mapping Holding Timer, the ES shall revert back to associating either the Pre- configured SNPA address if one exists or the "All Multicast Capable End Systems" SNPA address for the specific group Network address. While an ES is permitted to listen in on other ESs announcements (needed for the damping option), an ES is not permitted to change its group Network address to SNPA address mapping based on the announcement of other ESs. Optionally, the ES may perform damping (resetting a Multicast Announcement Timer corresponding to a particular group Network address) if the conditions necessary to withhold a particular announcement are met. In order to perform damping the following conditions must be met: (1)The ES must be processing other ES's announcements; (2)An ESGH PDU is received that identifies the exact same group Network address and SNPA address pairing on a particular subnetwork that this ES is announcing on; (3) The Multicast Holding Timer parameter value in the ESGH PDU received is equal to or greater than the Multicast Holding Timer value, for this subnetwork, that is being used by the ES processing this ESGH PDU.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -