📄 rfc1405.txt
字号:
Network Working Group C. AllocchioRequest for Comments: 1405 I.N.F.N. - Italy January 1993 Mapping between X.400(1984/1988) and Mail-11 (DECnet mail)Status of this Memo This memo defines an Experimental Protocol for the Internet community. Discussion and suggestions for improvement are requested. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This document describes a set of mappings which will enable inter working between systems operating the CCITT X.400 ( 1984 / 1988 ) Recommendations on Message Handling Systems, and systems running the Mail-11 (also known as DECnet mail) protocol. The specifications are valid within DECnet Phase IV addressing and routing scheme. The complete scenario of X.400 / RFC822 / Mail-11 is also considered, in order to cover the possible complex cases arising in multiple gateway translations. This document covers mainly the O/R address to DECnet from/to address mapping (and vice versa); other mappings are based on RFC 1327 and its eventual future updates. This is a combined effort of COSINE S2.2, the RARE MSG Working Group, and the IETF X.400 Ops Working Group.Chapter 1 - Introduction1.1. X.400 The standard referred shortly into this document as "X.400" relates to the CCITT 1984 and 1988 X.400 Series Recommendations covering the Message Oriented Text Interchange Service (MOTIS). This document covers the Inter Personal Messaging System (IPMS) only.1.2. Mail-11 Mail-11, also known as DECnet mail and often improperly referred as VMSmail, is the proprietary protocol implemented by Digital Equipment Corporation (DEC) to establish a real-time text messaging systemAllocchio [Page 1]RFC 1405 Mail-11 Mapping January 1993 among systems implementing the DECnet Phase IV networking protocols.1.3. RFC822 RFC822 was defined as a standard for personal messaging systems within the DARPA Internet and is now diffused on top of many different message transfer protocols, like SMTP, UUCP, BITNET, JNT Grey Book, CSnet. Its mapping with X.400 is fully described in RFC1327. In this document we will try to consider its relations with Mail-11, too.1.4. The user community The community using X.400 messaging system is currently growing in the whole world, but there is still a number of very large communities using Mail-11 based messaging systems willing to communicate easily with X.400 based Message Handling Systems. Among these large DECnet based networks we can include the High Energy Physics network (HEPnet) and the Space Physics Analysis Network (SPAN). These DECnet communities will in the future possibly migrate to DECnet Phase V (DECnet-OSI) protocols, converting thus their messaging systems to OSI specifications, i.e., merging into the X.400 MHS; however the transition period could be long, and there could always be some DECnet Phase IV communities around. For these reasons a set of mapping rules covering conversion between Mail-11 and X.400 is described in this document. This document also covers the case of Mail-11 systems implementing the "foreign mail protocol" allowing Mail-11 to interface other mail systems, including RFC822 based system.Chapter 2 - Message Elements2.1. Service Elements Mail-11 protocol offers a very restricted set of elements composing a Inter Personal Message (IPM), whereas X.400 specifications support a complex and large amount of service elements. Considering the case where a message is relayed between two X.400 MHS via a DECnet network this could result in a nearly complete loss of information. To minimise this inconvenience most of X.400 service elements will be mapped into Mail-11 text body parts. To consider also the case when a message originates from a network implementing RFC822 protocols and is relayed via Mail-11 to and X.400 MHS, the applied mapping from X.400 service elements into Mail-11 text body part the rulesAllocchio [Page 2]RFC 1405 Mail-11 Mapping January 1993 specified in RFC1327 and their updates will be used, producing an RFC822-like header.2.2. Mail-11 service elements All envelope (P1) and header (P2) Mail-11 service elements are supported in the conversion to X.400. Note that Mail-11 P1 is solely composed by P1.From and P1.To, and any other Mail-11 element belongs to Mail-11 P2: - P1.From maps to P1.Originator - P1.To maps to P1.Primary Recipient - P2.From maps to P2.Originator - P2.To maps to P2.Primary Recipient - Cc maps to P2.Copy Recipient - Date maps to Submission Time Stamp - Subj maps to Subject Any eventual RFC822-like text header in Mail-11 body part will be interpreted as specified into RFC1327 and its updates.2.3. X.400 service elements The following X.400 service elements are supported directly into Mail-11 conversion: - P1.Originator maps to P1.'From' - P1.Primary Recipients maps to P1.'To' - P2.Originator maps to P2.'From'Allocchio [Page 3]RFC 1405 Mail-11 Mapping January 1993 - P2.Primary Recipients maps to P2.'To' - Copy Recipients maps to 'Cc' - Submission Time Stamp maps to 'date' - Subject maps to 'Subj' The following X.400 service element is partially supported into Mail-11 conversion: - Blind Copy Recipient to ensure the required privacy, when a message contains a BCC address, the following actions occurs: - a new message is created, containing the body parts; - a new envelope is added to the new message, containing the originator and the BCC recipient addresses only; - a note is added to the message informing the BCC recipient about the fact that the message was a BCC; - the new message is delivered separately; - a note is added to the message delivered to TO and CC recipients informing them about the fact that there were some BCC recipients, too. Any other X.400 service element support is done accordingly to RFC1327 including the mapped element into the RFC822-like header into Mail-11 body part.Chapter 3 - Basic Mappings The basic mappings indicated in RFC1327 and its updates should be fully used.Chapter 4 - Addressing4.1. Mail-11 addressing Mail-11 addressing can vary from a very simple case up to complex ones, if there are other Mail-11 to "something-else" gateways involved. In any case a Mail-11 address is an ASCII string composed of different elements.Allocchio [Page 4]RFC 1405 Mail-11 Mapping January 19934.2. X.400 addressing On the other hand, An X.400 O/R address is a collection of attributes, which can anyway be presented as an IA5 textual representation as defined in chapter 4 of RFC1327.4.3. Mail-11 address components Let us start defining the different parts composing a Mail-11 address. We can consider any Mail-11 address as composed by 3 parts: [[route]::] [[node]::] local-part where 'route' and 'node' are optional and only 'local-part' is compulsory. Here comes a strict definition of these elements node = *(ALPHA/DIGIT) / *DIGIT / *DIGIT "." *DIGIT route = *(node "::") local-part = username / nickname / for-protocol username = *(ALPHA/DIGIT) nickname = <printablestring - <" " and HTAB>> for-protocol = (f-pref f-sep <">f-address<">) f-pref = *(ALPHA/DIGIT) f-sep = "%" / "::" f-address = printablestring / RFC822-address / X400-text-address X400-text-address = <textual representation of an X.400 O/R addr> Please note that in x-text-address both the ";" notation and the "/" notation are equivalent and allowed (see examples in different sect.)Allocchio [Page 5]RFC 1405 Mail-11 Mapping January 1993 Some examples: route node local-part ----------------------------------------------------------- USER47 MYNODE::BETTY BOSTON::CLUS02::GOOFY1::MARY34 IN%"M.P.Tracy@Dicdum.cc.edu" UCLA13::MVAX93::MRGATE::"MBOX1::MBX34::MYC3::BOB" MIAMI2::George.Rosenthal CCUBVX::VS3100::Jnet%"IAB3425@IBAX23L" MRGATE::"C=xx::A=bbb::P=ppp::S=Joe" MAINVX::IN%"path1!path2!user%dom" GWX400::gw%"C=xx;ADMD=aaa;PRMD=ppp;S=Lee;" GX409A::x400%"/C=xx/A=aaa/P=ppp/S=Lee" smtp%"postmast@nodeb.bitnet" MICKEY::PRFGAT::profs%"NANCY@IBMB" edu%"HU427BD%CSUNIB@abc.acme.edu"Chapter 5 - Mapping5.1. Mapping scheme DECnet address field is somehow a 'flat land' with some obliged routes to reach some hidden areas. Thus a truly hierarchical mapping scheme using mapping tables as suitable for RFC822 is not the appropriate solution. A fixed set of rules using DDAs support is defined in order to define the mapping. Another important aspect of the problem is the coexistence of many disjoint DECnet networks, using the same DECnet address space, i.e., common X.400 and/or RFC822 mailing system acting as glue to connect different isolated Mail-11 islands. Thus, to identify uniquely each DECnet network we must also introduce the concept of 'DECnet network name', which we will refer shortly as 'net' from now onwards. We define as 'net' a unique ASCII string identifying the DECnet network we are connected to. To be more specific, the 'net' element will identify the DECnet community being served, i.e., it could also differ from the actual official network name. Aliases are allowed for the net = 'HEPnet' the High Energy Physics DECnet network net = 'SPAN' the Space Physics Analysis Network net = 'Enet' the Digital Equipment Corporate Network The need of labelling each DECnet network with its name comes also from the requirement to implement the 'intelligent' gateway, i.e., the gateway which is able to understand its ability to connectAllocchio [Page 6]RFC 1405 Mail-11 Mapping January 1993 directly to the specified DECnet network, even if the O/R address specify a path to a different gateway. A more detailed discussion of the problem is in 5.3 and 5.5. A registry of 'net' attributes and their correspondent gateways must also be implemented to insure uniqueness of names. A simple table coupling 'net' and the gateway address is used, in a syntax similar to the 'gate' table used in RFC1327. An example: HEPnet#OU$Cosine-gw.O$@.PRMD$infn.ADMD$garr.C$IT# SPAN#OU$Cosine-gw.O$@.PRMD$infn.ADMD$garr.C$IT# SPAN#O$ESRIN1.PRMD$esa.ADMD$Master400.C$it# Ambiguous left entries are allowed. Gateway implementations could
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -