📄 rfc2251.txt
字号:
Network Working Group M. WahlRequest for Comments: 2251 Critical Angle Inc.Category: Standards Track T. Howes Netscape Communications Corp. S. Kille Isode Limited December 1997 Lightweight Directory Access Protocol (v3)1. Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1997). All Rights Reserved.IESG Note This document describes a directory access protocol that provides both read and update access. Update access requires secure authentication, but this document does not mandate implementation of any satisfactory authentication mechanisms. In accordance with RFC 2026, section 4.4.1, this specification is being approved by IESG as a Proposed Standard despite this limitation, for the following reasons: a. to encourage implementation and interoperability testing of these protocols (with or without update access) before they are deployed, and b. to encourage deployment and use of these protocols in read-only applications. (e.g. applications where LDAPv3 is used as a query language for directories which are updated by some secure mechanism other than LDAP), and c. to avoid delaying the advancement and deployment of other Internet standards-track protocols which require the ability to query, but not update, LDAPv3 directory servers.Wahl, et. al. Standards Track [Page 1]RFC 2251 LDAPv3 December 1997 Readers are hereby warned that until mandatory authentication mechanisms are standardized, clients and servers written according to this specification which make use of update functionality are UNLIKELY TO INTEROPERATE, or MAY INTEROPERATE ONLY IF AUTHENTICATION IS REDUCED TO AN UNACCEPTABLY WEAK LEVEL. Implementors are hereby discouraged from deploying LDAPv3 clients or servers which implement the update functionality, until a Proposed Standard for mandatory authentication in LDAPv3 has been approved and published as an RFC.Table of Contents 1. Status of this Memo .................................... 1 Copyright Notice ....................................... 1 IESG Note .............................................. 1 2. Abstract ............................................... 3 3. Models ................................................. 4 3.1. Protocol Model ........................................ 4 3.2. Data Model ............................................ 5 3.2.1. Attributes of Entries ............................... 5 3.2.2. Subschema Entries and Subentries .................... 7 3.3. Relationship to X.500 ................................. 8 3.4. Server-specific Data Requirements ..................... 8 4. Elements of Protocol ................................... 9 4.1. Common Elements ....................................... 9 4.1.1. Message Envelope .................................... 9 4.1.1.1. Message ID ........................................ 11 4.1.2. String Types ........................................ 11 4.1.3. Distinguished Name and Relative Distinguished Name .. 11 4.1.4. Attribute Type ...................................... 12 4.1.5. Attribute Description ............................... 13 4.1.5.1. Binary Option ..................................... 14 4.1.6. Attribute Value ..................................... 14 4.1.7. Attribute Value Assertion ........................... 15 4.1.8. Attribute ........................................... 15 4.1.9. Matching Rule Identifier ............................ 15 4.1.10. Result Message ..................................... 16 4.1.11. Referral ........................................... 18 4.1.12. Controls ........................................... 19 4.2. Bind Operation ........................................ 20 4.2.1. Sequencing of the Bind Request ...................... 21 4.2.2. Authentication and Other Security Services .......... 22 4.2.3. Bind Response ....................................... 23 4.3. Unbind Operation ...................................... 24 4.4. Unsolicited Notification .............................. 24 4.4.1. Notice of Disconnection ............................. 24 4.5. Search Operation ...................................... 25Wahl, et. al. Standards Track [Page 2]RFC 2251 LDAPv3 December 1997 4.5.1. Search Request ...................................... 25 4.5.2. Search Result ....................................... 29 4.5.3. Continuation References in the Search Result ........ 31 4.5.3.1. Example ........................................... 31 4.6. Modify Operation ...................................... 32 4.7. Add Operation ......................................... 34 4.8. Delete Operation ...................................... 35 4.9. Modify DN Operation ................................... 36 4.10. Compare Operation .................................... 37 4.11. Abandon Operation .................................... 38 4.12. Extended Operation ................................... 38 5. Protocol Element Encodings and Transfer ................ 39 5.1. Mapping Onto BER-based Transport Services ............. 39 5.2. Transfer Protocols .................................... 40 5.2.1. Transmission Control Protocol (TCP) ................. 40 6. Implementation Guidelines .............................. 40 6.1. Server Implementations ................................ 40 6.2. Client Implementations ................................ 40 7. Security Considerations ................................ 41 8. Acknowledgements ....................................... 41 9. Bibliography ........................................... 41 10. Authors' Addresses ..................................... 42 Appendix A - Complete ASN.1 Definition ..................... 44 Full Copyright Statement ................................... 502. Abstract The protocol described in this document is designed to provide access to directories supporting the X.500 models, while not incurring the resource requirements of the X.500 Directory Access Protocol (DAP). This protocol is specifically targeted at management applications and browser applications that provide read/write interactive access to directories. When used with a directory supporting the X.500 protocols, it is intended to be a complement to the X.500 DAP. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", and "MAY" in this document are to be interpreted as described in RFC 2119 [10]. Key aspects of this version of LDAP are: - All protocol elements of LDAPv2 (RFC 1777) are supported. The protocol is carried directly over TCP or other transport, bypassing much of the session/presentation overhead of X.500 DAP. - Most protocol data elements can be encoded as ordinary strings (e.g., Distinguished Names).Wahl, et. al. Standards Track [Page 3]RFC 2251 LDAPv3 December 1997 - Referrals to other servers may be returned. - SASL mechanisms may be used with LDAP to provide association security services. - Attribute values and Distinguished Names have been internationalized through the use of the ISO 10646 character set. - The protocol can be extended to support new operations, and controls may be used to extend existing operations. - Schema is published in the directory for use by clients.3. Models Interest in X.500 [1] directory technologies in the Internet has led to efforts to reduce the high cost of entry associated with use of these technologies. This document continues the efforts to define directory protocol alternatives, updating the LDAP [2] protocol specification.3.1. Protocol Model The general model adopted by this protocol is one of clients performing protocol operations against servers. In this model, a client transmits a protocol request describing the operation to be performed to a server. The server is then responsible for performing the necessary operation(s) in the directory. Upon completion of the operation(s), the server returns a response containing any results or errors to the requesting client. In keeping with the goal of easing the costs associated with use of the directory, it is an objective of this protocol to minimize the complexity of clients so as to facilitate widespread deployment of applications capable of using the directory. Note that although servers are required to return responses whenever such responses are defined in the protocol, there is no requirement for synchronous behavior on the part of either clients or servers. Requests and responses for multiple operations may be exchanged between a client and server in any order, provided the client eventually receives a response for every request that requires one. In LDAP versions 1 and 2, no provision was made for protocol servers returning referrals to clients. However, for improved performance and distribution this version of the protocol permits servers to return to clients referrals to other servers. This allows servers to offload the work of contacting other servers to progress operations.Wahl, et. al. Standards Track [Page 4]RFC 2251 LDAPv3 December 1997 Note that the core protocol operations defined in this document can be mapped to a strict subset of the X.500(1997) directory abstract service, so it can be cleanly provided by the DAP. However there is not a one-to-one mapping between LDAP protocol operations and DAP operations: server implementations acting as a gateway to X.500 directories may need to make multiple DAP requests.3.2. Data Model This section provides a brief introduction to the X.500 data model, as used by LDAP. The LDAP protocol assumes there are one or more servers which jointly provide access to a Directory Information Tree (DIT). The tree is made up of entries. Entries have names: one or more attribute values from the entry form its relative distinguished name (RDN), which MUST be unique among all its siblings. The concatenation of the relative distinguished names of the sequence of entries from a particular entry to an immediate subordinate of the root of the tree forms that entry's Distinguished Name (DN), which is unique in the tree. An example of a Distinguished Name is CN=Steve Kille, O=Isode Limited, C=GB Some servers may hold cache or shadow copies of entries, which can be used to answer search and comparison queries, but will return referrals or contact other servers if modification operations are requested. Servers which perform caching or shadowing MUST ensure that they do not violate any access control constraints placed on the data by the originating server. The largest collection of entries, starting at an entry that is mastered by a particular server, and including all its subordinates and their subordinates, down to the entries which are mastered by different servers, is termed a naming context. The root of the DIT is a DSA-specific Entry (DSE) and not part of any naming context: each server has different attribute values in the root DSE. (DSA is an X.500 term for the directory server).3.2.1. Attributes of Entries Entries consist of a set of attributes. An attribute is a type with one or more associated values. The attribute type is identified by a short descriptive name and an OID (object identifier). The attributeWahl, et. al. Standards Track [Page 5]RFC 2251 LDAPv3 December 1997 type governs whether there can be more than one value of an attribute of that type in an entry, the syntax to which the values must conform, the kinds of matching which can be performed on values of that attribute, and other functions. An example of an attribute is "mail". There may be one or more values of this attribute, they must be IA5 (ASCII) strings, and they are case insensitive (e.g. "foo@bar.com" will match "FOO@BAR.COM"). Schema is the collection of attribute type definitions, object class definitions and other information which a server uses to determine how to match a filter or attribute value assertion (in a compare operation) against the attributes of an entry, and whether to permit add and modify operations. The definition of schema for use with LDAP is given in [5] and [6]. Additional schema elements may be defined in other documents. Each entry MUST have an objectClass attribute. The objectClass attribute specifies the object classes of an entry, which along with
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -