📄 rfc2709.txt
字号:
Network Working Group P. SrisureshRequest for Comments: 2709 Lucent TechnologiesCategory: Informational October 1999 Security Model with Tunnel-mode IPsec for NAT DomainsStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.Abstract There are a variety of NAT flavors, as described in [Ref 1]. Of the domains supported by NATs, only Realm-Specific IP clients are able to pursue end-to-end IPsec secure sessions. However, all flavors of NAT are capable of offering tunnel-mode IPsec security to private domain hosts peering with nodes in external realm. This document describes a security model by which tunnel-mode IPsec security can be architected on NAT devices. A section is devoted to describing how security policies may be transparently communicated to IKE (for automated KEY exchange) during Quick Mode. Also outlined are applications that can benefit from the Security Model described.1. Introduction and Overview NAT devices provide transparent routing to end hosts trying to communicate from disparate address realms, by modifying IP and transport headers en-route. This solution works best when the end user identifier (such as host name) is different from the address used to locate end user. End-to-end application level payload security can be provided for applications that do not embed realm-specific information in payloads that is meaningless to one of the end-users. Applications that do embed realm-specific information in payload will require an application level gateway (ALG) to make the payload meaningful in both realms. However, applications that require assistance of an ALG en-route cannot pursue end-to-end application level security.Srisuresh Informational [Page 1]RFC 2709 Security for NAT Domains October 1999 All applications traversing a NAT device, irrespective of whether they require assistance of an ALG or not, can benefit from IPsec tunnel-mode security, when NAT device acts as the IPsec tunnel end point. Section 2 below defines terms specific to this document. Section 3 describes how tunnel mode IPsec security can be recognized on NAT devices. IPsec Security architecture, format and operation of various types of security mechanisms may be found in [Ref 2], [Ref 3] and [Ref 4]. This section does not address how session keys and policies are exchanged between a NAT device acting as IPsec gateway and external peering nodes. The exchange could have taken place manually or using any of known automatic exchange techniques. Section 4 assumes that Public Key based IKE protocol [Ref 5] may be used to automate exchange of security policies, session keys and other Security Association (SA) attributes. This section describes a method by which security policies administered for a private domain may be translated for communicating with external nodes. Detailed description of IKE protocol operation may be found in [Ref 5] and [Ref 6]. Section 5 describes applications of the security model described in the document. Applications listed include secure external realm connectivity for private domain hosts and secure remote access to enterprise mobile hosts.2. Terminology Definitions for majority of terms used in this document may be found in one of (a) NAT Terminology and Considerations document [Ref 1], (b) IP security Architecture document [Ref 2], or (c) Internet Key Enchange (IKE) document [Ref 5]. Below are terms defined specifically for this document.2.1. Normal-NAT The term "Normal-NAT" is introduced to distinguish normal NAT processing from the NAT processing used for secure packets embedded within an IPsec secure tunnel. "Normal-NAT" is the normal NAT processing as described in [Ref 1].2.2. IPsec Policy Controlled NAT (IPC-NAT) The term "IPsec Policy Controlled NAT" (IPC-NAT, for short) is defined to describe the NAT transformation applied as an extension of IPsec transformation to packets embedded within an IP-IP tunnel, forSrisuresh Informational [Page 2]RFC 2709 Security for NAT Domains October 1999 which the NAT node is a tunnel end point. IPC-NAT function is essentially an adaptation of NAT extensions to embedded packets of tunnel-mode IPsec. Packets subject to IPC-NAT processing are beneficiaries of IPsec security between the NAT device and an external peer entity, be it a host or a gateway node. IPsec policies place restrictions on what NAT mappings are used. For example, IPsec access control security policies to a peer gateway will likely restrict communication to only certain addresses and/or port numbers. Thus, when NAT performs translations, it must insure that the translations it performs are consist with the security policies. Just as with Normal-NAT, IPC-NAT function can assume any of NAT flavors, including Traditional-NAT, Bi-directional-NAT and Twice-NAT. An IPC-NAT device would support both IPC-NAT and normal-NAT functions.3. Security model of IPC-NAT The IP security architecture document [Ref 2] describes how IP network level security may be accomplished within a globally unique address realm. Transport and tunnel mode security are discussed. For purposes of this document, we will assume IPsec security to mean tunnel mode IPsec security, unless specified otherwise. Elements fundamental to this security architecture are (a) Security Policies, that determine which packets are permitted to be subject to Security processing, and (b) Security Association Attributes that identify the parameters for security processing, including IPsec protocols, algorithms and session keys to be applied. Operation of tunnel mode IPsec security on a device that does not support Network Address Translation may be described as below in figures 1 and 2. +---------------+ No +---------------------------+ | | +--->|Forward packet in the Clear| Outgoing |Does the packet| | |Or Drop, as appropriate. | -------->|match Outbound |-| +---------------------------+ Packet |Security | | +-------------+ |Policies? | |Yes |Perform | Forward | | +--->|Outbound |---------> +---------------+ |Security | IPsec Pkt |(Tunnel Mode)| +-------------+ Figure 1. Operation of Tunnel-Mode IPsec on outgoing packets.Srisuresh Informational [Page 3]RFC 2709 Security for NAT Domains October 1999 IPsec packet +----------+ +----------+ destined to |Perform | Embedded |Does the | No(Drop) ------------>|Inbound |--------->|Pkt match |--------> the device |Security | Packet |Inbound SA| Yes(Forward) |(Detunnel)| |Policies? | +----------+ +----------+ Figure 2. Operation of Tunnel-Mode IPsec on Incoming packets A NAT device that provides tunnel-mode IPsec security would be required to administer security policies based on private realm addressing. Further, the security policies determine the IPsec tunnel end-point peer. As a result, a packet may be required to undergo different type of NAT translation depending upon the tunnel end-point the IPsec node peers with. In other words, IPC-NAT will need a unique set of NAT maps for each security policy configured. IPC-NAT will perform address translation in conjunction with IPsec processing differently with each peer, based on security policies. The following diagrams (figure 3 and figure 4) illustrate the operation of IPsec tunneling in conjunction with NAT. Operation of an IPC-NAT device may be distinguished from that of an IPsec gateway that does not support NAT as follows. (1) IPC-NAT device has security policies administered using private realm addressing. A traditional IPsec gateway will have its security policies administered using a single realm (say, external realm) addressing. (2) Elements fundamental to the security model of an IPC-NAT device includes IPC-NAT address mapping (and other NAT parameter definitions) in conjunction with Security policies and SA attributes. Fundamental elements of a traditional IPsec gateway are limited only to Security policies and SA attributes. +---------------+ +-------------------------+ | | No | Apply Normal-NAT or Drop| Outgoing |Does the packet| +--->| as appropriate | -------->|match Outbound |-| +-------------------------+ Packet |Security | | +---------+ +-------------+ (Private |Policies? | |Yes |Perform | |Perform |Forward Domain) | | +--->|Outbound |->|Outbound |--------> +---------------+ |NAT | |Security |IPsec Pkt |(IPC-NAT)| |(Tunnel mode)| +---------+ +-------------+ Figure 3. Tunnel-Mode IPsec on an IPC-NAT device for outgoing pktsSrisuresh Informational [Page 4]RFC 2709 Security for NAT Domains October 1999 IPsec Pkt +----------+ +---------+ +----------+ destined |Perform | Embedded |Perform | |Does the |No(Drop) --------->|Inbound |--------->|Inbound |->|Pkt match |--------> to device |Security | Packet |NAT | |Inbound SA|Yes(Forward) (External |(Detunnel)| |(IPC-NAT)| |Policies? | Domain) +----------+ +---------+ +----------+ Figure 4. Tunnel-Mode IPsec on an IPC-NAT device for Incoming pkts Traditional NAT is session oriented, allowing outbound-only sessions to be translated. All other flavors of NAT are Bi-directional. Any and all flavors of NAT mapping may be used in conjunction with the security policies and secure processing on an IPC-NAT device. For illustration purposes in this document, we will assume tunnel mode IPsec on a Bi-directional NAT device. Notice however that a NAT device capable of providing security across IPsec tunnels can continue to support Normal-NAT for packets that do not require IPC-NAT. Address mapping and other NAT parameter definitions for Normal-NAT and IPC-NAT are distinct. Figure 3 identifies how a NAT device distinguishes between outgoing packets that need to be processed through Normal-NAT vs. IPC-NAT. As for packets incoming from external realm, figure 4 outlines packets that may be subject to IPC-NAT. All other packets are subject to Normal- NAT processing only.4. Operation of IKE protocol on IPC-NAT device. IPC-NAT operation described in the previous section can be accomplished based on manual session key exchange or using an automated key Exchange protocol between peering entities. In this section, we will consider adapting IETF recommended Internet Key Exchange (IKE) protocol on a IPC-NAT device for automatic exchange of security policies and SA parameters. In other words, we will focus on the operation of IKE in conjunction with tunnel mode IPsec on NAT devices. For the reminder of this section, we will refer NAT device to mean IPC-NAT device, unless specified otherwise. IKE is based on UDP protocol and uses public-key encryption to exchange session keys and other attributes securely across an address realm. The detailed protocol and operation of IKE in the context of IP may be found in [Ref 3] and [Ref 4]. Essentially, IKE has 2 phases. In the first phase, IKE peers operate in main or aggressive mode to authenticate each other and set up a secure channel between themselves. A NAT device has an interface to the external realm and is no different from any other node in the realm to negotiate phase ISrisuresh Informational [Page 5]RFC 2709 Security for NAT Domains October 1999 with peer external nodes. The NAT device may assume any of the valid Identity types and authentication methodologies necessary to communicate and authenticate with peers in the realm. The NAT device may also interface with a Certification Authority (CA) in the realm to retrieve certificates and perform signature validation. In the second phase, IKE peers operate in Quick Mode to exchange policies and IPsec security proposals to negotiate and agree upon security transformation algorithms, policies, keys, lifetime and other security attributes. During this phase, IKE process must communicate with IPsec Engine to (a) collect secure session attributes and other parameters to negotiate with peer IKE nodes, and to (b) notify security parameters agreed upon (with peer) during the negotiation. An IPC-NAT device, operating as IPsec gateway, has the security policies administered based on private realm addressing. An ALG will be required to translate policies from private realm addressing into external addressing, as the IKE process needs to communicate these policies to peers in external realm. Note, IKE datagrams are not subject to any NAT processing. IKE-ALG simply translates select portions of IKE payload as per the NAT map defined for the policy match. The following diagram illustrates how an IKE-ALG process interfaces with IPC-NAT to take the security policies and IPC-NAT
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -