📄 rfc1512.txt
字号:
Network Working Group J. CaseRequest for Comments: 1512 The University of Tennesse andUpdates: 1285 SNMP Research, Incorporated A. Rijsinghani Digital Equipment Corporation September 1993 FDDI Management Information BaseStatus of this Memo This RFC specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing devices which implement the FDDI based on the ANSI FDDI SMT 7.3 draft standard [8], which has been forwarded for publication by the X3T9.5 committee.Table of Contents 1. The Network Management Framework ...................... 2 1.1 Object Definitions ................................... 2 1.2 Format of Definitions ................................ 2 2. Overview .............................................. 2 2.1 Textual Conventions .................................. 3 3. Changes from RFC 1285 ................................. 3 4. Object Definitions .................................... 4 4.1 The SMT Group ........................................ 6 4.2 The MAC Group ........................................ 17 4.3 The Enhanced MAC Counters Group ...................... 29 4.4 The PATH Group ....................................... 32 4.5 The PORT Group ....................................... 38 5. Acknowledgements ...................................... 48 6. References ............................................ 50 7. Security Considerations ............................... 51 8. Authors' Addresses .................................... 51Case & Rijsinghani [Page 1]RFC 1512 FDDI MIB September 19931. The Network Management Framework The Internet-standard Network Management Framework consists of three components. They are: o STD 16, RFC 1155 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. STD 16, RFC 1212 defines a more concise description mechanism, which is wholly consistent with the SMI. o STD 17, RFC 1213 defines MIB-II, the core set of managed objects for the Internet suite of protocols. o STD 15, RFC 1157 which defines the SNMP, the protocol used for network access to managed objects. The Framework permits new objects to be defined for the purpose of experimentation and evaluation.1.1. Object Definitions Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.1.2. Format of Definitions Section 4 contains contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [7].2. Overview This document defines the managed objects for FDDI devices which are to be accessible via the Simple Network Management Protocol (SNMP). At present, this applies to these values of the ifType variable in the Internet-standard MIB: fddi(15) For these interfaces, the value of the ifSpecific variable in theCase & Rijsinghani [Page 2]RFC 1512 FDDI MIB September 1993 MIB-II [4] has the OBJECT IDENTIFIER value: fddimib OBJECT IDENTIFIER ::= { fddi 73 } The definitions of the objects presented here draws heavily from related work in the ANSI X3T9.5 committee and the SMT subcommittee of that committee [8]. In fact, the definitions of the managed objects in this document are, to the maximum extent possible, identical to those identified by the ANSI committee. The semantics of each managed object should be the same with syntactic changes made as necessary to recast the objects in terms of the Internet-standard SMI and MIB so as to be compatible with the SNMP. Examples of these syntactic changes include remapping booleans to enumerated integers, remapping bit strings to octet strings, and the like. In addition, the naming of the objects was changed to achieve compatibility. These minimal syntactic changes with no semantic changes should allow implementations of SNMP manageable FDDI systems to share instrumentation with other network management schemes and thereby minimize implementation cost. In addition, the translation of information conveyed by managed objects from one network management scheme to another is eased by these shared definitions. Only the essential variables, as indicated by their mandatory status in the ANSI specification, were retained in this document. The importance of variables which have an optional status in the ANSI specification were perceived as being less widely accepted.2.1. Textual Conventions Several new datatypes are introduced as a textual convention in this MIB document. These textual conventions enhance the readability of the document and ease comparisons with its ANSI counterpart. It should be noted that the introduction of these textual conventions has no effect on either the syntax or the semantics of any managed objects. The use of these is merely an artifact of the explanatory method used. Objects defined in terms of one of these methods are always encoded by means of the rules that define the primitive type. Hence, no changes to the SMI or the SNMP are necessary to accommodate these textual conventions which are adopted merely for the convenience of readers and writers in pursuit of the elusive goal of clear, concise, and unambiguous MIB documents.3. Changes from RFC 1285 The changes from RFC 1285 [2] to this document, based on changes from ANSI SMT 6.2 to SMT 7.3, were so numerous that the objects in this MIB module are located on a different branch of the MIB tree. NoCase & Rijsinghani [Page 3]RFC 1512 FDDI MIB September 1993 assumptions should be made about compatibility with RFC 1285.4. Object Definitions FDDI-SMT73-MIB DEFINITIONS ::= BEGIN IMPORTS Counter FROM RFC1155-SMI OBJECT-TYPE FROM RFC-1212; -- This MIB module uses the extended OBJECT-TYPE macro as -- defined in [7]. -- this is the FDDI MIB module fddi OBJECT IDENTIFIER ::= { transmission 15 } fddimib OBJECT IDENTIFIER ::= { fddi 73 } -- textual conventions FddiTimeNano ::= INTEGER (0..2147483647) -- This data type specifies 1 nanosecond units as -- an integer value. -- -- NOTE: The encoding is normal integer representation, not -- two's complement. Since this type is used for variables -- which are encoded as TimerTwosComplement in the ANSI -- specification, two operations need to be performed on such -- variables to convert from ANSI form to SNMP form: -- -- 1) Convert from two's complement to normal integer -- representation -- 2) Multiply by 80 to convert from 80 nsec to 1 nsec units -- -- No resolution is lost. Moreover, the objects for which -- this data type is used effectively do not lose any range -- due to the lower maximum value since they do not require -- the full range. -- -- Example: If fddimibMACTReq had a value of 8 ms, it would -- be stored in ANSI TimerTwosComplement format as 0xFFFE7960 -- [8 ms is 100000 in 80 nsec units, which is then converted -- to two's complement] but be reported as 8000000 in SNMP -- since it is encoded here as FddiTimeNano.Case & Rijsinghani [Page 4]RFC 1512 FDDI MIB September 1993 FddiTimeMilli ::= INTEGER (0..2147483647) -- This data type is used for some FDDI timers. It specifies -- time in 1 millisecond units, in normal integer -- representation. FddiResourceId ::= INTEGER (0..65535) -- This data type is used to refer to an instance of a MAC, -- PORT, or PATH Resource ID. Indexing begins -- at 1. Zero is used to indicate the absence of a resource. FddiSMTStationIdType ::= OCTET STRING (SIZE (8)) -- The unique identifier for the FDDI station. This is a -- string of 8 octets, represented as X' yy yy xx xx xx xx -- xx xx' with the low order 6 octet (xx) from a unique IEEE -- assigned address. The high order two bits of the IEEE -- address, the group address bit and the administration bit -- (Universal/Local) bit should both be zero. The first two -- octets, the yy octets, are implementor-defined. -- -- The representation of the address portion of the station id -- is in the IEEE (ANSI/IEEE P802.1A) canonical notation for -- 48 bit addresses. The canonical form is a 6-octet string -- where the first octet contains the first 8 bits of the -- address, with the I/G(Individual/Group) address bit as the -- least significant bit and the U/L (Universal/Local) bit -- as the next more significant bit, and so on. Note that -- addresses in the ANSI FDDI standard SMT frames are -- represented in FDDI MAC order. FddiMACLongAddressType ::= OCTET STRING (SIZE (6)) -- The representation of long MAC addresses as management -- values is in the IEEE (ANSI/IEEE P802.1A) canonical -- notation for 48 bit addresses. The canonical form is a -- 6-octet string where the first octet contains the first 8 -- bits of the address, with the I/G (Individual/Group) -- address bit as the least significant bit and the U/L -- (Universal/Local) bit as the next more significant bit, -- and so on. Note that the addresses in the SMT frames are -- represented in FDDI MAC order. -- groups in the FDDI MIB module fddimibSMT OBJECT IDENTIFIER ::= { fddimib 1 } fddimibMAC OBJECT IDENTIFIER ::= { fddimib 2 } fddimibMACCounters OBJECT IDENTIFIER ::= { fddimib 3 }Case & Rijsinghani [Page 5]RFC 1512 FDDI MIB September 1993 fddimibPATH OBJECT IDENTIFIER ::= { fddimib 4 } fddimibPORT OBJECT IDENTIFIER ::= { fddimib 5 } -- the SMT group -- Implementation of the SMT group is mandatory for all -- systems which implement manageable FDDI subsystems. fddimibSMTNumber OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The number of SMT implementations (regardless of their current state) on this network management application entity. The value for this variable must remain constant at least from one re- initialization of the entity's network management system to the next re-initialization." ::= { fddimibSMT 1 } -- the SMT table fddimibSMTTable OBJECT-TYPE SYNTAX SEQUENCE OF FddimibSMTEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of SMT entries. The number of entries shall not exceed the value of fddimibSMTNumber." ::= { fddimibSMT 2 } fddimibSMTEntry OBJECT-TYPE SYNTAX FddimibSMTEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An SMT entry containing information common to a given SMT." INDEX { fddimibSMTIndex } ::= { fddimibSMTTable 1 } FddimibSMTEntry ::= SEQUENCE { fddimibSMTIndex INTEGER,Case & Rijsinghani [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -