📄 rfc2863.txt
字号:
ifInUcastPkts, and ifOutUcastPkts) be generalized so as to apply to any sub-layer (rather than only to a sub-layer immediately beneathMcCloghrie & Kastenholz Standards Track [Page 5]RFC 2863 The Interfaces Group MIB June 2000 the network layer as previously), plus some (specifically, ifSpeed) which need to have appropriate values identified for use when a generalized definition does not apply to a particular sub-layer. In addition, this adopted solution makes no requirement that a device, in which a sub-layer is instrumented by a conceptual row of the ifTable, be aware of whether an internetwork protocol runs on top of (i.e., at some layer above) that sub-layer. In fact, the counters of packets received on an interface are defined as counting the number "delivered to a higher-layer protocol". This meaning of "higher-layer" includes: (1) Delivery to a forwarding module which accepts packets/frames/octets and forwards them on at the same protocol layer. For example, for the purposes of this definition, the forwarding module of a MAC-layer bridge is considered as a "higher-layer" to the MAC-layer of each port on the bridge. (2) Delivery to a higher sub-layer within a interface stack. For example, for the purposes of this definition, if a PPP module operated directly over a serial interface, the PPP module would be considered the higher sub-layer to the serial interface. (3) Delivery to a higher protocol layer which does not do packet forwarding for sub-layers that are "at the top of" the interface stack. For example, for the purposes of this definition, the local IP module would be considered the higher layer to a SLIP serial interface. Similarly, for output, the counters of packets transmitted out an interface are defined as counting the number "that higher-level protocols requested to be transmitted". This meaning of "higher- layer" includes: (1) A forwarding module, at the same protocol layer, which transmits packets/frames/octets that were received on an different interface. For example, for the purposes of this definition, the forwarding module of a MAC-layer bridge is considered as a "higher-layer" to the MAC-layer of each port on the bridge. (2) The next higher sub-layer within an interface stack. For example, for the purposes of this definition, if a PPP module operated directly over a serial interface, the PPP module would be a "higher layer" to the serial interface.McCloghrie & Kastenholz Standards Track [Page 6]RFC 2863 The Interfaces Group MIB June 2000 (3) For sub-layers that are "at the top of" the interface stack, a higher element in the network protocol stack. For example, for the purposes of this definition, the local IP module would be considered the higher layer to an Ethernet interface.3.1.2. Guidance on Defining Sub-layers The designer of a media-specific MIB must decide whether to divide the interface into sub-layers or not, and if so, how to make the divisions. The following guidance is offered to assist the media- specific MIB designer in these decisions. In general, the number of entries in the ifTable should be kept to the minimum required for network management. In particular, a group of related interfaces should be treated as a single interface with one entry in the ifTable providing that: (1) None of the group of interfaces performs multiplexing for any other interface in the agent, (2) There is a meaningful and useful way for all of the ifTable's information (e.g., the counters, and the status variables), and all of the ifTable's capabilities (e.g., write access to ifAdminStatus), to apply to the group of interfaces as a whole. Under these circumstances, there should be one entry in the ifTable for such a group of interfaces, and any internal structure which needs to be represented to network management should be captured in a MIB module specific to the particular type of interface. Note that application of bullet 2 above to the ifTable's ifType object requires that there is a meaningful media-specific MIB and a meaningful ifType value which apply to the group of interfaces as a whole. For example, it is not appropriate to treat an HDLC sub-layer and an RS-232 sub-layer as a single ifTable entry when the media- specific MIBs and the ifType values for HDLC and RS-232 are separate (rather than combined). Subject to the above, it is appropriate to assign an ifIndex value to any interface that can occur in an interface stack (in the ifStackTable) where the bottom of the stack is a physical interface (ifConnectorPresent has the value 'true') and there is a layer-3 or other application that "points down" to the top of this stack. An example of an application that points down to the top of the stack is the Character MIB [21].McCloghrie & Kastenholz Standards Track [Page 7]RFC 2863 The Interfaces Group MIB June 2000 Note that the sub-layers of an interface on one device will sometimes be different from the sub-layers of the interconnected interface of another device; for example, for a frame-relay DTE interface connected a frameRelayService interface, the inter-connected DTE and DCE interfaces have different ifType values and media-specific MIBs. These guidelines are just that, guidelines. The designer of a media-specific MIB is free to lay out the MIB in whatever SMI conformant manner is desired. However, in doing so, the media- specific MIB MUST completely specify the sub-layering model used for the MIB, and provide the assumptions, reasoning, and rationale used to develop that model.3.1.3. Virtual Circuits Several of the sub-layers for which media-specific MIB modules have been defined are connection oriented (e.g., Frame Relay, X.25). Experience has shown that each effort to define such a MIB module revisits the question of whether separate conceptual rows in the ifTable are needed for each virtual circuit. Most, if not all, of these efforts to date have decided to have all virtual circuits reference a single conceptual row in the ifTable. This memo strongly recommends that connection-oriented sub-layers do not have a conceptual row in the ifTable for each virtual circuit. This avoids the proliferation of conceptual rows, especially those which have considerable redundant information. (Note, as a comparison, that connection-less sub-layers do not have conceptual rows for each remote address.) There may, however, be circumstances under which it is appropriate for a virtual circuit of a connection- oriented sub-layer to have its own conceptual row in the ifTable; an example of this might be PPP over an X.25 virtual circuit. The MIB in section 6 of this memo supports such circumstances. If a media-specific MIB wishes to assign an entry in the ifTable to each virtual circuit, the MIB designer must present the rationale for this decision in the media-specific MIB's specification.3.1.4. Bit, Character, and Fixed-Length Interfaces RS-232 is an example of a character-oriented sub-layer over which (e.g., through use of PPP) IP datagrams can be sent. Due to the packet-based nature of many of the objects in the ifTable, experience has shown that it is not appropriate to have a character-oriented sub-layer represented by a whole conceptual row in the ifTable.McCloghrie & Kastenholz Standards Track [Page 8]RFC 2863 The Interfaces Group MIB June 2000 Experience has also shown that it is sometimes desirable to have some management information for bit-oriented interfaces, which are similarly difficult to represent by a whole conceptual row in the ifTable. For example, to manage the channels of a DS1 circuit, where only some of the channels are carrying packet-based data. A further complication is that some subnetwork technologies transmit data in fixed length transmission units. One example of such a technology is cell relay, and in particular Asynchronous Transfer Mode (ATM), which transmits data in fixed-length cells. Representing such a interface as a packet-based interface produces redundant objects if the relationship between the number of packets and the number of octets in either direction is fixed by the size of the transmission unit (e.g., the size of a cell). About half the objects in the ifTable are applicable to every type of interface: packet-oriented, character-oriented, and bit-oriented. Of the other half, two are applicable to both character-oriented and packet-oriented interfaces, and the rest are applicable only to packet-oriented interfaces. Thus, while it is desirable for consistency to be able to represent any/all types of interfaces in the ifTable, it is not possible to implement the full ifTable for bit- and character-oriented sub-layers. A rejected solution to this problem would be to split the ifTable into two (or more) new MIB tables, one of which would contain objects that are relevant only to packet-oriented interfaces (e.g., PPP), and another that may be used by all interfaces. This is highly undesirable since it would require changes in every agent implementing the ifTable (i.e., just about every existing SNMP agent). The solution adopted in this memo builds upon the fact that compliance statements in SMIv2 (in contrast to SMIv1) refer to object groups, where object groups are explicitly defined by listing the objects they contain. Thus, with SMIv2, multiple compliance statements can be specified, one for all interfaces and additional ones for specific types of interfaces. The separate compliance statements can be based on separate object groups, where the object group for all interfaces can contain only those objects from the ifTable which are appropriate for every type of interfaces. Using this solution, every sub-layer can have its own conceptual row in the ifTable. Thus, section 6 of this memo contains definitions of the objects of the existing 'interfaces' group of MIB-II, in a manner which is both SNMPv2-compliant and semantically-equivalent to the existing MIB-II definitions. With equivalent semantics, and with the BER ("on theMcCloghrie & Kastenholz Standards Track [Page 9]RFC 2863 The Interfaces Group MIB June 2000 wire") encodings unchanged, these definitions retain the same OBJECT IDENTIFIER values as assigned by MIB-II. Thus, in general, no rewrite of existing agents which conform to MIB-II and the ifExtensions MIB is required. In addition, this memo defines several object groups for the purposes of defining which objects apply to which types of interface: (1) the ifGeneralInformationGroup. This group contains those objects applicable to all types of network interfaces, including bit-oriented interfaces. (2) the ifPacketGroup. This group contains those objects applicable to packet-oriented network interfaces. (3) the ifFixedLengthGroup. This group contains the objects applicable not only to character-oriented interfaces, such as RS-232, but also to those subnetwork technologies, such as cell-relay/ATM, which transmit data in fixed length transmission units. As well as the octet counters, there are also a few other counters (e.g., the error counters) which are useful for this type of interface, but are currently defined as being packet-oriented. To accommodate this, the definitions of these counters are generalized to apply to character-oriented interfaces and fixed-length-transmission interfaces. It should be noted that the octet counters in the ifTable aggregate octet counts for unicast and non-unicast packets into a single octet counter per direction (received/transmitted). Thus, with the above definition of fixed-length-transmission interfaces, where such interfaces which support non-unicast packets, separate counts of unicast and multicast/broadcast transmissions can only be maintained in a media-specific MIB module.3.1.5. Interface Numbering MIB-II defines an object, ifNumber, whose value represents: "The number of network interfaces (regardless of their current state) present on this system." Each interface is identified by a unique value of the ifIndex object,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -