📄 rfc2963.txt
字号:
| | | | V | | V +--------+ +-------+ +--------+ Incoming | green | | | | | Outgoing Packet ==>| RAS |==>| Meter |==>| Marker |==>Packet Stream | | | | | | Stream +--------+ +-------+ +--------+ Figure 4. green RAS The two rate adaptive shapers described in section 2 calculate a shaping rate, which is defined as the maximum of the estimated average incoming data rate and some function of the buffer occupancy. Using this shaping rate, the RAS computes the time schedule at which the packet at the head of the queue of the shaper is to be released. The main idea of the green RAS is to couple the shaper with the downstream meter so that the green RAS knows at what time the packet at the head of its queue would be accepted as green by the meter. If this time instant is earlier than the release time computed from the current shaping rate, then the packet can be released at this time instant. Otherwise, the packet at the head of the queue of the green RAS will be released at the time instant calculated from the current shaping rate.3.2. Configuration of the Green single rate Rate Adaptive Shaper (GsrRAS) The G-srRAS must be configured in the same way as the srRAS (see section 2.2).Bonaventure & De Cnodder Informational [Page 7]RFC 2963 A Rate Adaptive Shaper October 20003.3. Behavior of the G-srRAS First of all, the shaping rate of the G-srRAS is calculated in the same way as for the srRAS. With the srRAS, this shaping rate determines a time schedule, T1, at which the packet at the head of the queue is to be released from the shaper. A second time schedule, T2, is calculated as the earliest time instant at which the packet at the head of the shaper's queue would be colored as green by the downstream srTCM. Suppose that a packet of size B bytes is at the head of the shaper and that CIR is the Committed Information Rate of the srTCM in bytes per second. If we denote the current time by t and by Tc(t) the amount of green tokens in the token bucket of the srTCM at time t, then T2 is equal to max(t, t+(B-Tc(t))/CIR). If B is larger than CBS, the Committed Burst Size of the srTCM, then T2 is set to infinity. When a packet arrives at the head of the queue of the shaper, it will leave this queue not sooner than min(T1, T2) from the shaper.3.4 Configuration of the Green two rates Rate Adaptive Shaper (G-trRAS) The G-trRAS must be configured in the same way as the trRAS (see section 2.4).3.5. Behavior of the G-trRAS First of all, the shaping rate of the G-trRAS is calculated in the same way as for the trRAS. With the trRAS, this shaping rate determines a time schedule, T1, at which the packet at the head of the queue is to be released from the shaper. A second time schedule, T2, is calculated as the earliest time instant at which the packet at the head of the shaper's queue would be colored as green by the downstream trTCM. Suppose that a packet of size B bytes is at the head of the shaper and that CIR is the Committed Information Rate of the srTCM in bytes per second. If we denote the current time by t and by Tc(t) (resp. Tp(t)) the amount of green (resp. yellow) tokens in the token bucket of the trTCM at time t, then T2 is equal to max(t, t+(B-Tc(t))/CIR,t+(B-Tp(t))/PIR). If B is larger than CBS, the committed burst size, or PBS, the peak burst size, of the srTCM, then T2 is set to infinity. When a packet arrives at the head of the queue of the shaper, it will leave this queue not sooner than min(T1, T2) from the shaper.Bonaventure & De Cnodder Informational [Page 8]RFC 2963 A Rate Adaptive Shaper October 20004. Assumption The shapers discussed in this document assume that the Internet traffic is dominated by protocols such as TCP that react appropriately to congestion by decreasing their transmission rate. The proposed shapers do not provide a performance gain if the traffic is composed of protocols that do not react to congestion by decreasing their transmission rate.5. Example services The shapers discussed in this document can be used where the TCMs proposed in [RFC2697] and [RFC2698] are used. In fact, simulations briefly discussed in Appendix A show that the performance of TCP can be improved when a rate adaptive shaper is used upstream of a TCM. We expect such rate adaptive shapers to be particularly useful at the edge of the network, for example inside (small) access routers or even network adapters.6. The rate adaptive shaper combined with other markers This document explains how the idea of a rate adaptive shaper can be combined with the srTCM and the trTCM. This resulted in the srRAS and the G-srRAS for the srTCM and in the trRAS and the G-trRAS for the trTCM. Similar adaptive shapers could be developed to support other traffic markers such as the Time Sliding Window Three Color Marker (TSWTCM) [Fang]. However, the exact definition of such new adaptive shapers and their performance is outside the scope of this document.7. Security Considerations The shapers described in this document have no known security concerns.8. Intellectual Property Rights The IETF has been notified of intellectual property rights claimed in regard to some or all of the specification contained in this document. For more information consult the online list of claimed rights.9. Acknowledgement We would like to thank Emmanuel Desmet for his comments.Bonaventure & De Cnodder Informational [Page 9]RFC 2963 A Rate Adaptive Shaper October 200010. References [Azeem] Azeem, F., Rao, A., Lu, X. and S. Kalyanaraman, "TCP- Friendly Traffic Conditioners for Differentiated Services", Work in Progress. [RFC2475] Blake S., Black, D., Carlson, M., Davies, E., Wang, Z. and W. Weiss, "An Architecture for Differentiated Services", RFC 2475, December 1998. [Bonaventure] Bonaventure O., "Integration of ATM under TCP/IP to provide services with a minimum guaranteed bandwidth", Ph. D. thesis, University of Liege, Belgium, September 1998. [Clark] Clark D. and Fang, W., "Explicit Allocation of Best- Effort Packet Delivery Service", IEEE/ACM Trans. on Networking, Vol. 6, No. 4, August 1998. [Cnodder] De Cnodder S., "Rate Adaptive Shapers for Data Traffic in DiffServ Networks", NetWorld+Interop 2000 Engineers Conference, Las Vegas, Nevada, USA, May 10-11, 2000. [Fang] Fang W., Seddigh N. and B. Nandy, "A Time Sliding Window Three Colour Marker (TSWTCM)", RFC 2859, June 2000. [Floyd] Floyd S. and V. Jacobson, "Random Early Detection Gateways for Congestion Avoidance", IEEE/ACM Transactions on Networking, August 1993. [RFC2697] Heinanen J. and R. Guerin, "A Single Rate Three Color Marker", RFC 2697, September 1999. [RFC2698] Heinanen J. and R. Guerin, "A Two Rate Three Color Marker", RFC 2698, September 1999. [RFC2597] Heinanen J., Baker F., Weiss W. and J. Wroclawski, "Assured Forwarding PHB Group", RFC 2597, June 1999. [Nichols] Nichols K. and B. Carpenter, "Format for Diffserv Working Group Traffic Conditioner Drafts", Work in Progress.Bonaventure & De Cnodder Informational [Page 10]RFC 2963 A Rate Adaptive Shaper October 2000 [Stoica] Stoica I., Shenker S. and H. Zhang, "Core-stateless fair queueuing: achieving approximately fair bandwidth allocations in high speed networks", ACM SIGCOMM98, pp. 118-130, Sept. 1998 [TM41] ATM Forum, Traffic Management Specification, verion 4.1, 1999Bonaventure & De Cnodder Informational [Page 11]RFC 2963 A Rate Adaptive Shaper October 2000AppendixA. Simulation results We briefly discuss simulations showing the benefits of the proposed shapers in simple network environments. Additional simulation results may be found in [Cnodder].A.1 description of the model To evaluate the rate adaptive shaper through simulations, we use the simple network model depicted in Figure A.1. In this network, we consider that a backbone network is used to provide a LAN Interconnection service to ten pairs of LANs. Each LAN corresponds to an uncongested switched 10 Mbps LAN with ten workstations attached to a customer router (C1-C10 in figure A.1). The delay on the LAN links is set to 1 msec. The MSS size of the workstations is set to 1460 bytes. The workstations on the left hand side of the figure send traffic to companion workstations located on the right hand side of the figure. All traffic from the LAN attached to customer router C1 is sent to the LAN attached to customer router C1'. There are ten workstations on each LAN and each workstation implements SACK-TCP with a maximum window size of 64 KBytes.Bonaventure & De Cnodder Informational [Page 12]RFC 2963 A Rate Adaptive Shaper October 2000 2.5 msec, 34 Mbps 2.5 msec, 34 Mbps <--------------> <--------------> \+---+ +---+/ -| C1|--------------+ +--------------|C1'|- /+---+ | | +---+\ \+---+ | | +---+/ -| C2|------------+ | | +------------|C2'|- /+---+ | | | | +---+\ \+---+ | | | | +---+/ -| C3|----------+ | | | | +----------|C3'|- /+---+ | | | | | | +---+\ \+---+ | | | | | | +---+/ -| C4|--------+ +-+----------+ +----------+-+ +--------|C4'|- /+---+ | | | | | | +---+\ \+---+ +---| | | |---+ +---+/ -| C5|------------| ER1 |-----| ER2 |------------|C5'|- /+---+ +---| | | |---+ +---+\ \+---+ | | | | | | +---+/ -| C6|--------+ +----------+ +----------+ +--------|C6'|- /+---+ |||| |||| +---+\ \+---+ |||| <-------> |||| +---+/ -| C7|------------+||| 70 Mbps |||+------------|C7'|- /+---+ ||| 10 msec ||| +---+\ \+---+ ||| ||| +---+/ -| C8|-------------+|| ||+-------------|C8'|- /+---+ || || +---+\ \+---+ || || +---+/ -| C9|--------------+| |+--------------|C9'|- /+---+ | | +---+\ \+---+ | | +----+/ -|C10|---------------+ +---------------|C10'|- /+---+ +----+\ Figure A.1. the simulation model.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -