📄 rfc1484.txt
字号:
Widget Inc, GB Would match the distinguished name: CN=James Hacker, L=Basingstoke, O=Widget Inc, CN=GB Abbreviation Some of the more significant components of the DN will be omitted, and then defaulted in some way (e.g., relative to a local context). For example: Steve Hardcastle-Kille Could be interpreted in the context of an organisational default. Local Type Keywords Local values can be used to identify types, in addition to the keywords defined in [HK93]. For example, "Organisation" may be recognised as an alternative to "O". Component Omission An intermediate component of the name may be omitted. Typically this will be an organisational unit. For example: Steve Hardcastle-Kille, University College London, GB In some cases, this can be combined with abbreviation. For example: Steve Hardcastle-Kille, University College LondonHardcastle-Kille [Page 7]RFC 1484 User Friendly Naming July 1993 Approximation Approximate renditions or alternate values of one or more of the components will be supplied. For example: Stephen Hardcastle-Kille, CS, UCL, GB or Steve Keill, Comp Sci, Univarstiy College London, GB Friendly Country A "friendly country name" can be used instead of the ISO 3166 two letter code. For example: UK; USA; France; Deutchland.3. Communicating Directory Names A goal of this standard is to provide a means of communicating directory names. Two approaches are given, one defined in [HK93], and the other here. A future version of these specifications may contain only one of these approaches, or recommend use of one approach. The approach can usually be distinguished implicitly, as types are normally omitted in the UFN approach, and are always present in the Distinguished Name approach. No recommendation is made here, but the merits of each approach is given. 1. Distinguished Name or DN. A representation of the distinguished name, according to the specification of [HK93]. 2. User Friendly Name or UFN. A purported name, which is expected to unambiguously resolve onto the distinguished name. When a UFN is communicated, a form which should efficiently and unambiguously resolve onto a distinguished name should be chosen. Thus it is reasonable to omit types, or to use alternate values which will unambiguously identify the entry in question (e.g., by use of an alternate value of the RDN attribute type). It is not reasonable to use keys which are (or are likely to become) ambiguous. The approach used should be implicit from the context, rather than wired into the syntax. The terms "Directory Name" and "X.500 Name" should be used to refer to a name which might be either a DN or UFN. An example of appropriate usage of both forms is given in the Section which defines the Author's location in section 12.Hardcastle-Kille [Page 8]RFC 1484 User Friendly Naming July 1993 Advantages of communicating the DN are: o The Distinguished Name is an unambiguous and stable reference to the user. o The DN will be used efficiently by the directory to obtain information. Advantages of communicating the UFN are: o Redundant type information can be omitted (e.g., "California", rather than "State=California", where there is known to be no ambiguity. o Alternate values can be used to identify a component. This might be used to select a value which is meaningful to the recipient, or to use a shorter form of the name. Often the uniqueness requirements of registration will lead to long names, which users will wish to avoid. o Levels of the hierarchy may be omitted. For example in a very small organisation, where a level of hierarchy has been used to represent company structure, and the person has a unique name within the organisation. Where UFN form is used, it is important to specify an unambiguous form. In some ways, this is analogous to writing a postal address. There are many legal ways to write it. Care needs to be taken to make the address unambiguous.4. Matching a purported name The following approach specifies a default algorithm to be used with the User Friendly Naming approach. It is appropriate to modify this algorithm, and future specifications may propose alternative algorithms. Two simple algorithms are noted in passing, which may be useful in some contexts: 1. Use type omission only, but otherwise require the value of the RDN attribute to be present. 2. Require each RDN to be identified as in 1), or by an exact match on an alternate value of the RDN attribute. These algorithms do not offer the flexibility of the default algorithm proposed, but give many of the benefits of the approach in a very simple manner.Hardcastle-Kille [Page 9]RFC 1484 User Friendly Naming July 1993 The major utility of the purported name is to provide the important "user friendly" characteristic of guessability. A user will supply a purported name to a user interface, and this will be resolved onto a distinguished name. When a user supplies a purported name there is a need to derive the DN. In most cases, it should be possible to derive a single name from the purported name. In some cases, ambiguities will arise and the user will be prompted to select from a multiple matches. This should also be the case where a component of the name did not "match very well". There is an assumption that the user will simply enter the name correctly. The purported name variants are designed to make this happen! There is no need for fancy window based interfaces or form filling for many applications of the directory. Note that the fancy interfaces still have a role for browsing, and for more complex matching. This type of naming is to deal with cases where information on a known user is desired and keyed on the user's name.4.1 Environment All matches occur in the context of a local environment. The local environment defines a sequence of name of a non-leaf objects in the DIT. This environment effectively defines a list of acceptable name abbreviations where the DUA is employed. The environment should be controllable by the individual user. It also defines an order in which to operate. This list is defined in the context of the number of name components supplied. This allows varying heuristics, depending on the environment, to make the approach have the "right" behaviour. In most cases, the environment will start at a local point in the DIT, and move upwards. Examples are given in Tables 1 and 2. Table 1 shows an example for a typical local DUA, which has the following characteristics: One component Assumed first to be a user in the department, then a user or department within the university, the a national organisation, and finally a country. Two components Most significant component is first assumed to be a national organisation, then a department (this might be reversed in some organisations), and finally a country.Hardcastle-Kille [Page 10]RFC 1484 User Friendly Naming July 1993 Three or more components The most significant component is first assumed to be a country, then a national organisation, and finally a department. +----------------------------------------------------+ | Number of | Environment | | Components | | +----------------------------------------------------+ | 1 | Physics, University College London, GB| | | University College London, GB | | | GB | | | __ | +----------------------------------------------------+ | 2 | GB | | | University College London, GB | | | __ | +----------------------------------------------------+ | 3+ | __ | | | GB | | | University College London, GB | +----------------------------------------------------+ Table 1: Local environment for private DUA +--------------------------------------+ | Number of | Environment | | Components | | +--------------------------------------+ | 1,2 | US | | | CA | | | __ | +--------------------------------------+ | 3+ | __ | | | US | | | CA | +--------------------------------------+ Table 2: Local environment for US Public DUAHardcastle-Kille [Page 11]RFC 1484 User Friendly Naming July 19934.2 Matching A purported name will be supplied, usually with a small number of components. This will be matched in the context of an environment. Where there are multiple components to be matched, these should be matched sequentially. If an unambiguous DN is determined, the match continues as if the full DN had been supplied. For example if Stephen Hardcastle-Kille, UCL is being matched in the context of environment GB, first UCL is resolved to the distinguished name: University College London, GB Then the next component of the purported name is taken to determine the final name. If there is an ambiguity (e.g., if UCL had made two matches, both paths are explored to see if the ambiguity can be resolved. Eventually a set of names will be passed back to the user. Each component of the environment is taken in turn. If the purported name has more components than the maximum depth, the environment element is skipped. The advantage of this will be seen in the example given later. A match of a name is considered to have three levels: Exact A DN is specified exactly Good Initially, a match should be considered good if it is unambiguous, and exactly matches an attribute value in the entry. For human names, a looser metric is probably desirable (e.g., S Hardcastle- Kille should be a good match of S. Hardcastle-Kille, S.E. Hardcastle-Kille or Steve Hardcastle-Kille even if these are not explicit alternate values). Poor Any other substring or approximate match Following a match, the reference can be followed, or the user prompted. If there are multiple matches, more than one path may be followed. There is also a shift/reduce type of choice: should any partial matches be followed or should the next element of theHardcastle-Kille [Page 12]RFC 1484 User Friendly Naming July 1993 environment be tried. The following heuristics are suggested, which may be modified in the light of experience. The overall aim is to resolve cleanly specified names with a minimum of fuss, but give sufficient user control to prevent undue searching and delay. 1. Always follow an exact match. 2. Follow all good matches if there are no exact matches. 3. If there are only poor matches, prompt the user. If the user accepts one or more match, they can be considered as good. If all are rejected, this can be treated as no matches. 4. Automatically move to the next element of the environment if no matches are found. When the final component is matched, a set of names will be identified. If none are identified, proceed to the next environment element. If the user rejects all of the names, processing of the next environment element should be confirmed. The exact approach to matching will depend on the level of the tree at which matching is being done. We can now consider how attributes are matched at various levels of the DIT.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -