📄 rfc1887.txt
字号:
RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995 occur at each level of the hierarchy (over a given period of time), compared to the number of routing domains and address prefixes that can conveniently and efficiently be handled via dynamic inter-domain routing protocols.3.1 Efficiency versus Decentralized Control. If the Internet plans to support a decentralized address administration, then there is a balance that must be sought between the requirements on IPv6 addresses for efficient routing and the need for decentralized address administration. A coherent addressing plan at any level within the Internet must take the alternatives into careful consideration. As an example of administrative decentralization, suppose the IPv6 address prefix 43/8 identifies part of the IPv6 address space allocated for North America. All addresses within this prefix may be allocated along topological boundaries in support of increased data abstraction. Within this prefix, addresses may be allocated on a per-provider bases, based on geography or some other topologically significant criteria. For the purposes of this example, suppose that this prefix is allocated on a per-provider basis. Subscribers within North America use parts of the IPv6 address space that is underneath the IPv6 address space of their service providers. Within a routing domain addresses for subnetworks and hosts are allocated from the unique IPv6 prefix assigned to the domain according to the addressing plan for that domain.4. IPv6 Address Administration and Routing in the Internet Internet routing components -- service providers (e.g., backbones, regional networks), and service subscribers (e.g., sites or campuses) -- are arranged hierarchically for the most part. A natural mapping from these components to IPv6 routing components is for providers and subscribers to act as routing domains. Alternatively, a subscriber (e.g., a site) may choose to operate as a part of a domain formed by a service provider. We assume that some, if not most, sites will prefer to operate as part of their provider's routing domain, exchanging routing information directly with the provider. The site is still allocated a prefix from the provider's address space, and the provider will advertise its own prefix into inter-domain routing.Rekhter & Li Informational [Page 6]RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995 Given such a mapping, where should address administration and allocation be performed to satisfy both administrative decentralization and data abstraction? The following possibilities are considered: 1) At some part within a routing domain, 2) At the leaf routing domain, 3) At the transit routing domain (TRD), and 4) At some other, more general boundaries, such as at the continental boundary. A part within a routing domain corresponds to any arbitrary connected set of subnetworks. If a domain is composed of multiple subnetworks, they are interconnected via routers. Leaf routing domains correspond to sites, where the primary purpose is to provide intra-domain routing services. Transit routing domains are deployed to carry transit (i.e., inter-domain) traffic; backbones and providers are TRDs. More general boundaries can be seen as topologically significant collections of TRDs. The greatest burden in transmitting and operating on reachability information is at the top of the routing hierarchy, where reachability information tends to accumulate. In the Internet, for example, providers must manage reachability information for all subscribers directly connected to the provider. Traffic destined for other providers is generally routed to the backbones (which act as providers as well). The backbones, however, must be cognizant of the reachability information for all attached providers and their associated subscribers. In general, the advantage of abstracting routing information at a given level of the routing hierarchy is greater at the higher levels of the hierarchy. There is relatively little direct benefit to the administration that performs the abstraction, since it must maintain routing information individually on each attached topological routing structure. For example, suppose that a given site is trying to decide whether to obtain an IPv6 address prefix directly from the IPv6 address space allocated for North America, or from the IPv6 address space allocated to its service provider. If considering only their own self-interest, the site itself and the attached provider have little reason to choose one approach or the other. The site must use one prefix or another; the source of the prefix has little effect on routing efficiency within the site. The provider must maintain informationRekhter & Li Informational [Page 7]RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995 about each attached site in order to route, regardless of any commonality in the prefixes of the sites. However, there is a difference when the provider distributes routing information to other providers (e.g., backbones or TRDs). In the first case, the provider cannot aggregate the site's address into its own prefix; the address must be explicitly listed in routing exchanges, resulting in an additional burden to other providers which must exchange and maintain this information. In the second case, each other provider (e.g., backbone or TRD) sees a single address prefix for the provider, which encompasses the new site. This avoids the exchange of additional routing information to identify the new site's address prefix. Thus, the advantages primarily accrue to other providers which maintain routing information about this site and provider. One might apply a supplier/consumer model to this problem: the higher level (e.g., a backbone) is a supplier of routing services, while the lower level (e.g., a TRD) is the consumer of these services. The price charged for services is based upon the cost of providing them. The overhead of managing a large table of addresses for routing to an attached topological entity contributes to this cost. At present the Internet, however, is not a market economy. Rather, efficient operation is based on cooperation. The recommendations discussed below describe simple and tractable ways of managing the IPv6 address space that benefit the entire community.4.1 Administration of IPv6 addresses within a domain. If individual hosts take their IPv6 addresses from a myriad of unrelated IPv6 address spaces, there will be effectively no data abstraction beyond what is built into existing intra-domain routing protocols. For example, assume that within a routing domain uses three independent prefixes assigned from three different IPv6 address spaces associated with three different attached providers. This has a negative effect on inter-domain routing, particularly on those other domains which need to maintain routes to this domain. There is no common prefix that can be used to represent these IPv6 addresses and therefore no summarization can take place at the routing domain boundary. When addresses are advertised by this routing domain to other routing domains, an enumerated list of the three individual prefixes must be used.Rekhter & Li Informational [Page 8]RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995 The number of IPv6 prefixes that leaf routing domains would advertise is on the order of the number of prefixes assigned to the domain; the number of prefixes a provider's routing domain would advertise is approximately the number of prefixes attached to the client leaf routing domains; and for a backbone this would be summed across all attached providers. This situation is just barely acceptable in the current Internet, and is intractable for the IPv6 Internet. A greater degree of hierarchical information reduction is necessary to allow continued growth in the Internet.4.2 Administration at the Leaf Routing Domain As mentioned previously, the greatest degree of data abstraction comes at the lowest levels of the hierarchy. Providing each leaf routing domain (that is, site) with a contiguous block of addresses from its provider's address block results in the biggest single increase in abstraction. From outside the leaf routing domain, the set of all addresses reachable in the domain can then be represented by a single prefix. Further, all destinations reachable within the provider's prefix can be represented by a single prefix. For example, consider a single campus which is a leaf routing domain which would currently require 4 different IPv6 prefixes. Instead, they may be given a single prefix which provides the same number of destination addresses. Further, since the prefix is a subset of the provider's prefix, they impose no additional burden on the higher levels of the routing hierarchy. There is a close relationship between hosts and routing domains. The routing domain represents the only path between a host and the rest of the internetwork. It is reasonable that this relationship also extend to include a common IPv6 addressing space. Thus, the hosts within the leaf routing domain should take their IPv6 addresses from the prefix assigned to the leaf routing domain.4.3 Administration at the Transit Routing Domain Two kinds of transit routing domains are considered, direct providers and indirect providers. Most of the subscribers of a direct provider are domains that act solely as service subscribers (they carry no transit traffic). Most of the subscribers of an indirect provider are domains that, themselves, act as service providers. In present terminology a backbone is an indirect provider, while an NSFnet regional is an example of a direct provider. Each case is discussedRekhter & Li Informational [Page 9]RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995 separately below.4.3.1 Direct Service Providers In a provider-based addressing plan, direct service providers should use their IPv6 address space for assigning IPv6 addresses from a unique prefix to the leaf routing domains that they serve. The benefits derived from data abstraction are greater than in the case of leaf routing domains, and the additional degree of data abstraction provided by this may be necessary in the short term. As an illustration consider an example of a direct provider that serves 100 clients. If each client takes its addresses from 4 independent address spaces then the total number of entries that are needed to handle routing to these clients is 400 (100 clients times 4 providers). If each client takes its addresses from a single address space then the total number of entries would be only 100. Finally, if all the clients take their addresses from the same address space then the total number of entries would be only 1. We expect that in the near term the number of routing domains in the Internet will grow to the point that it will be infeasible to route on the basis of a flat field of routing domains. It will therefore be essential to provide a greater degree of information abstraction with IPv6. Direct providers may give part of their address space (prefixes) to leaf domains, based on an address prefix given to the provider. This results in direct providers advertising to other providers a small fraction of the number of address prefixes that would be necessary if they enumerated the individual prefixes of the leaf routing domains. This represents a significant savings given the expected scale of global internetworking. The efficiencies gained in inter-domain routing clearly warrant the adoption of IPv6 address prefixes derived from the IPv6 address space of the providers. The mechanics of this scenario are straightforward. Each direct provider is given a unique small set of IPv6 address prefixes, from which its attached leaf routing domains can allocate slightly longer IPv6 address prefixes. For example assume that NIST is a leaf routing domain whose inter-domain link is via SURANet. If SURANet is assigned an unique IPv6 address prefix 43DC:0A21/32, NIST could use a unique IPv6 prefix of 43DC:0A21:7652:34/56.Rekhter & Li Informational [Page 10]RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -