📄 rfc2023.txt
字号:
Network Working Group D. HaskinRequest for Comments: 2023 E. AllenCategory: Standards Track Bay Networks, Inc. October 1996 IP Version 6 over PPPStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract The Point-to-Point Protocol (PPP) [1] provides a standard method of encapsulating Network Layer protocol information over point-to-point links. PPP also defines an extensible Link Control Protocol, and proposes a family of Network Control Protocols (NCPs) for establishing and configuring different network-layer protocols. This document defines the method for transmission of IP Version 6 [2] packets over PPP links as well as the Network Control Protocol (NCP) for establishing and configuring the IPv6 over PPP. It also specifies the method of forming IPv6 link-local addresses on PPP links.Table of Contents 1. Introduction .......................................... 2 1.1. Specification of Requirements ...................... 2 2. Sending IPv6 Datagrams ................................ 3 3. A PPP Network Control Protocol for IPv6 ............... 3 4. IPV6CP Configuration Options .......................... 4 4.1. Interface-Token ................................... 4 4.2. IPv6-Compression-Protocol.......................... 7 5. Stateless Autoconfiguration and Link-Local Addresses .. 9 A. IPV6CP Recommended Options ............................. 9 Security Considerations ....................................... 10 References .................................................... 10 Acknowledgments ............................................... 10 Authors' Addresses ............................................ 10Haskin & Allen Standards Track [Page 1]RFC 2023 IP Version 6 over PPP October 19961. Introduction PPP has three main components: 1. A method for encapsulating datagrams over serial links. 2. A Link Control Protocol (LCP) for establishing, configuring, and testing the data-link connection. 3. A family of Network Control Protocols (NCPs) for establishing and configuring different network-layer protocols. In order to establish communications over a point-to-point link, each end of the PPP link must first send LCP packets to configure and test the data link. After the link has been established and optional facilities have been negotiated as needed by the LCP, PPP must send NCP packets to choose and configure one or more network-layer protocols. Once each of the chosen network-layer protocols has been configured, datagrams from each network-layer protocol can be sent over the link. In this document, the NCP for establishing and configuring the IPv6 over PPP is referred as the IPv6 Control Protocol (IPV6CP). The link will remain configured for communications until explicit LCP or NCP packets close the link down, or until some external event occurs (power failure at the other end, carrier drop, etc.).1.1. Specification of Requirements In this document, several words are used to signify the requirements of the specification. These words are often capitalized. MUST This word, or the adjective "required", means that the definition is an absolute requirement of the specification. MUST NOT This phrase means that the definition is an absolute prohibition of the specification. SHOULD This word, or the adjective "recommended", means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications must be understood and carefully weighed before choosing a different course. MAY This word, or the adjective "optional", means that this item is one of an allowed set of alternatives. An implementation which does not include this option MUST beHaskin & Allen Standards Track [Page 2]RFC 2023 IP Version 6 over PPP October 1996 prepared to inter-operate with another implementation which does include the option.2. Sending IPv6 Datagrams Before any IPv6 packets may be communicated, PPP must reach the Network-Layer Protocol phase, and the IPv6 Control Protocol must reach the Opened state. Exactly one IPv6 packet is encapsulated in the Information field of PPP Data Link Layer frames where the Protocol field indicates type hex 0057 (Internet Protocol Version 6). The maximum length of an IPv6 packet transmitted over a PPP link is the same as the maximum length of the Information field of a PPP data link layer frame. PPP links supporting IPv6 must allow at least 576 octets in the information field of a data link layer frame.3. A PPP Network Control Protocol for IPv6 The IPv6 Control Protocol (IPV6CP) is responsible for configuring, enabling, and disabling the IPv6 protocol modules on both ends of the point-to-point link. IPV6CP uses the same packet exchange mechanism as the Link Control Protocol (LCP). IPV6CP packets may not be exchanged until PPP has reached the Network-Layer Protocol phase. IPV6CP packets received before this phase is reached should be silently discarded. The IPv6 Control Protocol is exactly the same as the Link Control Protocol [1] with the following exceptions: Data Link Layer Protocol Field Exactly one IPV6CP packet is encapsulated in the Information field of PPP Data Link Layer frames where the Protocol field indicates type hex 8057 (IPv6 Control Protocol). Code field Only Codes 1 through 7 (Configure-Request, Configure-Ack, Configure-Nak, Configure-Reject, Terminate-Request, Terminate-Ack and Code-Reject) are used. Other Codes should be treated as unrecognized and should result in Code-Rejects.Haskin & Allen Standards Track [Page 3]RFC 2023 IP Version 6 over PPP October 1996 Timeouts IPV6CP packets may not be exchanged until PPP has reached the Network-Layer Protocol phase. An implementation should be prepared to wait for Authentication and Link Quality Determination to finish before timing out waiting for a Configure-Ack or other response. It is suggested that an implementation give up only after user intervention or a configurable amount of time. Configuration Option Types IPV6CP has a distinct set of Configuration Options, which are defined below.4. IPV6CP Configuration Options IPV6CP Configuration Options allow negotiation of desirable IPv6 parameters. IPV6CP uses the same Configuration Option format defined for LCP [1], with a separate set of Options. If a Configuration Option is not included in a Configure-Request packet, the default value for that Configuration Option is assumed. Up-to-date values of the IPV6CP Option Type field are specified in the most recent "Assigned Numbers" RFC [5]. Current values are assigned as follows: 1 Interface-Token 2 IPv6-Compression-Protocol4.1. Interface-Token Description This Configuration Option provides a way to negotiate a unique 32-bit interface token to be used for the address autoconfiguration [3] at the local end of the link (see section 5). The interface token MUST be unique within the PPP link; i.e. upon completion of the negotiation different Interface-Token values are to be selected for the ends of the PPP link. Before this Configuration Option is requested, an implementation must choose its tentative Interface-Token. It is recommended that a non-zero value be chosen in the most random manner possible in order to guarantee with very high probability that an implementation will arrive at a unique token value. A good way to choose a unique random number is to start with a unique seed. Suggested sources of uniqueness include machine serial numbers,Haskin & Allen Standards Track [Page 4]RFC 2023 IP Version 6 over PPP October 1996 other network hardware addresses, system clocks, etc. Note that it may not be sufficient to use a link-layer address alone as the seed, since it will not always be unique. Thus it is suggested that the seed should be calculated from a variety of sources that are likely to be different even on identical systems and as many sources as possible be used simultaneously. Good sources of uniqueness or randomness are required for the Interface-Token negotiation to succeed. If a good source of randomness cannot be found, it is recommended that a zero value be used for the Interface-Token transmitted in the Configure-Request. In this case the PPP peer may provide a valid non-zero Interface-Token in its response as described below. Note that if at least one of the PPP peers is able to generate a unique random number, the token negotiation will succeed. When a Configure-Request is received with the Interface-Token Configuration Option and the receiving peer implements this option, the received Interface-Token is compared with the Interface-Token of the last Configure-Request sent to the peer. Depending on the result of the comparison an implementation MUST respond in one of the following ways: If the two Interface-Tokens are different but the received Interface-Token is zero, a Configure-Ack is sent with a non-zero Interface-Token value suggested for use by the remote peer. Such a suggested Interface-Token MUST be different from the Interface- Token of the last Configure-Request sent to the peer. If the two Interface-Tokens are different and the received Interface-Token is not zero, the Interface-Token MUST be acknowledged, i.e. a Configure-Ack is sent with the requested Interface-Token, meaning that the responding peer agrees with the Interface-Token requested. If the two Interface-Tokens are equal and are not zero, a Configure-Nak MUST be sent specifying a different non-zero Interface-Token value suggested for use by the remote peer. If the two Interface-Tokens are equal to zero, the Interface- Tokens negotiation MUST be terminated by transmitting the Configure-Reject with the Interface-Token value set to zero. In this case a unique Interface-Token can not be negotiated. If a Configure-Request is received with the Interface-Token Configuration Option and the receiving peer does not implement this option, Configure-Rej is sent.Haskin & Allen Standards Track [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -