📄 rfc1077.txt
字号:
RFC 1077 November 1988 Wide-Area Distributed Data/Knowledge Base Management Systems Computer-stored data, information, and knowledge is distributed around the country for a variety of reasons. The ability to perform complex queries, updates, and report generation as though many large databases are one system would be extremely powerful, yet requires low-delay, high-bandwidth communication for interactive use. The Corporation for National Research Initiatives (NRI) has promoted the notion of a National Knowledge base with these characteristics. In particular, an attractive approach is to cache views at the user sites, or close by to allow efficient repeated queries and multi-relation processing for relations on different nodes. However, with caching, a processing activity may incur a miss in the midst of a query or update, causing it to be delayed by the time required to retrieve the missing relation or portion of relation. To minimize the overhead for cache directories, both at the server and client sites, the unit of caching should be large---say a megabyte or more. In addition, to maintain consistency at the caching client sites, server sites need to multicast invalidations and/or updates. Communication requirements are further increased by replication of the data. The critical parameter is latency for cache misses and consistency operations. Taking the distance between sites to be on average 1/4 the diameter of the country, a one Gbit/s data rate is required to reduce the transmission time to be roughly the same as the propagation delay, namely around 8 milliseconds for this size of unit. Note that this application is supporting far more sophisticated queries and updates than normally associated with transaction processing, thus requiring larger amount of data to be transferred. 2.2. Types of Traffic and Communications Modes Different types of traffic may impose different constraints in terms of throughput, delay, delay dispersion, reliability and sequenced delivery. Table 1 summarizes some of the main characteristics of several different types of traffic.Gigabit Working Group [Page 6]RFC 1077 November 1988 Table 1: Communication Traffic Requirements +------------------------+-------------+-------------+-------------+ | | | | Error-free | | Traffic | Delay | Throughput | Sequenced | | Type | Requirement | Requirement | Delivery | +------------------------+-------------+-------------+-------------+ | Interactive Simulation | Low |Moderate-High| No | +------------------------+-------------+-------------+-------------+ | Network Monitoring | Moderate | Low | No | +------------------------+-------------+-------------+-------------+ | Virtual Terminal | Low | Low | Yes | +------------------------+-------------+-------------+-------------+ | Bulk Transfer | High | High | Yes | +------------------------+-------------+-------------+-------------+ | Message | Moderate | Moderate | Yes | +------------------------+-------------+-------------+-------------+ | Voice |Low, constant| Moderate | No | +------------------------+-------------+-------------+-------------+ | Video |Low, constant| High | No | +------------------------+-------------+-------------+-------------+ | Facsimile | Moderate | High | No | +------------------------+-------------+-------------+-------------+ | Image Transfer | Variable | High | No | +------------------------+-------------+-------------+-------------+ | Distributed Computing | Low | Variable | Yes | +------------------------+-------------+-------------+-------------+ | Network Control | Moderate | Low | Yes | +------------------------+-------------+-------------+-------------+ The topology among users can be of three types: point-to-point (one- to-one connectivity), multicast (one sender and multiple receivers), and conferencing (multiple senders and multiple receivers). There are three types of transfers that can take place among users. They are connection-oriented network service, connectionless network service, and stream or synchronous traffic. Connection and connectionless services are asynchronous. A connection-oriented service assumes and provides for relationships among the multiple packets sent over the connection (e.g., to a common destination) while connectionless service assumes each packet is a complete and separate entity unto itself. For stream or synchronous service a reservation scheme is used to set up and guarantee a constant and steady amount of bandwidth between any two subscribers.Gigabit Working Group [Page 7]RFC 1077 November 1988 2.3. Network Backbone The GB needs to be of high bandwidth to support a large population of users, and additionally to provide high-speed connectivity among certain subscribers who may need such capability (e.g., between two supercomputers). These users may access the GN from local area networks (LANs) directly connected to the backbone or via high-speed intermediate regional networks. The backbone must also minimize end-to-end delay to support highly interactive high-speed (supercomputer) activities. It is important that the LANs that will be connected to the GN be permitted data rates independent of the data rates of the GB. LAN speeds should be allowed to change without affecting the GB, and the GB speeds should be allowed to change without affecting the LANs. In this way, development of the technology for LANs and the GB can proceed independently. Access rate requirements to the GB and the GN will vary depending on user requirements and local environments. The users may require access rates ranging from multi-kbit/s in the case of terminals or personal computers connected by modems up to multi-Mbit/s and beyond for powerful workstations up to the Gbit/s range for high-speed computing and data resources. 2.4. Directory Services Directory services similar to those found in CCITT X.500/ISO DIS 9594 need to be provided. These include mapping user names to electronic mail addresses, distribution lists, support for authorization checking, access control, and public key encryption schemes, multimedia mail capabilities, and the ability to keep track of mobile users (those who move from place to place and host computer to host computer). The directory services may also list facilities available to users via the network. Some examples are databases, supercomputing or other special-purpose applications, and on-line help or telephone hotlines. The services provided by X.500 may require some extension for GN. For example, there is no provision for multilevel security, and the approach taken to authentication must be studied to ensure that it meets the requirements of GN and its user community.Gigabit Working Group [Page 8]RFC 1077 November 1988 2.5. Network Management and Routing The objective of network management is to ensure that the network functions smoothly and efficiently, and consists of the following: accounting, security, performance monitoring, fault isolation and configuration control. Accounting ensures that users are properly billed for the services that the network provides. Accounting enforces a tariff; a tariff expresses a usage policy. The network need only keep track of those items addressed by the tariff, such as allocated bandwidth, number of packets sent, number of ports used, etc. Another type of accounting may need to be supported by the network to support resource sharing, namely accounting analogous to telephone "900" numbers. This accounting performed by the network on behalf of resource providers and consumers is a pragmatic solution to the problem of getting the users and consumers into a financial relationship with each other which has stymied previous attempts to achieve widespread use of specialized resources. Performance monitoring is needed so that the managers can tell how the network is performing and take the necessary actions to keep its performance at a level that will provide users with satisfactory service. Fault isolation using technical control mechanisms is needed for network maintenance. Configuration management allows the network to function efficiently. Several new types of routing will be required by GN. In addition to true type-of-service, needed to support diverse distributed applications, real-time applications, interactive applications, and bulk data transfer, there will be need for traffic controls to enforce various routing policies. For example, policy may dictate that traffic from certain users, applications, or hosts may not be permitted to traverse certain segments of the network. Alternatively, traffic controls may be used to promote fairness; that is, to make sure that busy link or network segment isn't dominated by a particular source or destination. The ability of applications to reserve network bandwidth in advance of its use, and the use of strategies such as soft connections, will also require development of new routing algorithms. 2.6. Network Security Requirements Security is a critical factor within the GN and one of those features that are difficult to provide. It is envisioned that bothGigabit Working Group [Page 9]RFC 1077 November 1988 unclassified and classified traffic will utilize the GN, so protection mechanisms must be an integral part of the network access strategy. Features such as authentication, integrity, confidentiality, access control, and nonrepudiation are essential to provide trusted and secure communication services for network users. A subscriber must have assurance that the person or system he is exchanging information with is indeed who he says he is. Authentication provides this assurance by verifying that the claimed source of a query request, control command, response, etc., is the actual source. Integrity assures that the subscriber's information (such as requests, commands, data, responses, etc.) is not changed, intentionally or unintentionally, while in transit or by replays of earlier traffic. Unauthorized users (e.g., intruders or network viruses) would be denied use of GN assets through access control mechanisms which verify that the authenticated source is authorized to receive the requested information or to initiate the specified command. In addition, nonrepudiation services can be offered to assure a third party that the transmitted information has not been altered. And finally, confidentiality will ensure that the contents of a message are not divulged to unauthorized individuals. Subscribers can decide, based upon their own security needs and particular activities, which of these services are necessary at a given time. 3. Critical Research Issues In the section above, we discussed the goals of a research program in gigabit networking; namely to provide the technology base for a network that will allow gigabit service to be provided in an effective way. In this section, we discuss those issues which we feel are critical to address in a research program to achieve such goals. 3.1. General Architectural Issues In the last generation of networks, it was assumed that bandwidth was the scarce resource and the design of the switch was dictated by the need to manage and allocate the bandwidth effectively. The most basic change in the next generation network is that the speeds of the trunks are rising faster than the speeds of the switching elements. This change in the balance of speeds has manifested itself in several ways. In most current designs for local area networks, whereGigabit Working Group [Page 10]RFC 1077 November 1988
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -