📄 rfc2814.txt
字号:
managed segment, the client must pass the user_priority value in the TCLASS object to its local packet classifier. This will ensure that the data packets in the admitted RSVP flow that are subsequently forwarded over the outgoing interface will contain the appropriate value encoded in their frame header.Yavatkar, et al. Standards Track [Page 15]RFC 2814 SBM (Subnet Bandwidth Manager) May 2000 * When an L3 device receives a PATH or RESV message over a managed segment in one L2 domain and it needs to forward the PATH/RESV message over an interface outside that domain, the L3 device must remove the TCLASS object (along with LAN_NHOP, RSVP_HOP_L2, and LAN_LOOPBACK objects in the case of the PATH message) before forwarding the PATH/RESV message. If the outgoing interface is on a separate L2 domain, these objects may be regenerated according to the processing rules applicable to that interface.5. Detailed Message Processing Rules5.1. Additional Notes on Terminology * An L2 device may have several interfaces with attached segments that are part of the same L2 domain. A switch in a L2 domain is an example of such a device. A device which has several interfaces may contain a SBM protocol entity that acts in different capacities on each interface. For example, a SBM protocol entity could act as a SBM on interface A, and act as a DSBM on interface B. * A SBM protocol entity on a layer 3 device can be a DSBM client, and SBM, a DSBM, or none of the above (SBM transparent). Non- transparent L3 devices can implement any combination of these roles simultaneously. DSBM clients always reside at L3 devices. * A SBM protocol entity residing at a layer 2 device can be a SBM, a DSBM or none of the above (SBM transparent). A layer 2 device will never host a DSBM client.5.2. Use Of Reserved IP Multicast Addresses As stated earlier, we require that the DSBM clients forward the RSVP PATH messages to their DSBMs in a L2 domain before they reach the next L3 hop in the path. RSVP PATH messages are addressed, according to RFC-2205, to their destination address (which can be either an IP unicast or multicast address). When a L2 device hosts a DSBM, a simple-to-implement mechanism must be provided for the device to capture an incoming PATH message and hand it over to the local DSBM agent without requiring the L2 device to snoop for L3 RSVP messages. In addition, DSBM clients need to know how to address SBM messages to the DSBM. For the ease of operation and to allow dynamic DSBM-client binding, it should be possible to easily detect and address the existing DSBM on a managed segment.Yavatkar, et al. Standards Track [Page 16]RFC 2814 SBM (Subnet Bandwidth Manager) May 2000 To facilitate dynamic DSBM-client binding as well as to enable easy detection and capture of PATH messages at L2 devices, we require that a DSBM be addressed using a logical address rather than a physical address. We make use of reserved IP multicast address(es) for the purpose of communication with a DSBM. In particular, we require that when a DSBM client or a SBM forwards a PATH message over a managed segment, it is addressed to a reserved IP multicast address. Thus, a DSBM on a L2 device needs to be configured in a way to make it easy to intercept the PATH message and forward it to the local SBM protocol entity. For example, this may involve simply adding a static entry in the device's filtering database (FDB) for the corresponding MAC multicast address to ensure the PATH messages get intercepted and are not forwarded further without the DSBM intervention. Similarly, a DSBM always sends the PATH messages over a managed segment using a reserved IP multicast address and, thus, the SBMs or DSBM clients on the managed segments must simply be configured to intercept messages addressed to the reserved multicast address on the appropriate interfaces to easily receive PATH messages. RSVP RESV messages continue to be unicast to the previous hop address stored as part of the PATH state at each intermediate hop. We define use of two reserved IP multicast addresses. We call these the "AllSBM Address" and the "DSBMLogicalAddress". These are chosen from the range of local multicast addresses, such that: * They are not passed through layer 3 devices. * They are passed transparently through layer 2 devices which are SBM transparent. * They are configured in the permanent database of layer 2 devices which host SBMs or DSBMs, such that they are directed to the SBM management entity in these devices. This obviates the need for these devices to explicitly snoop for SBM related control packets. * The two reserved addresses are 224.0.0.16 (DSBMLogicalAddress) and 224.0.0.17 (AllSBMAddress). These addresses are used as described in the following table: Type DSBMLogicaladdress AllSBMAddress DSBM * Sends PATH messages * Monitors this address to detect Client to this address the presence of a DSBMYavatkar, et al. Standards Track [Page 17]RFC 2814 SBM (Subnet Bandwidth Manager) May 2000 * Monitors this address to receive PATH messages forwarded by the DSBM SBM * Sends PATH messages * Monitors and sends on this to this address address to participate in election of the DSBM * Monitors this address to receive PATH messages forwarded by the DSBM DSBM * Monitors this address * Monitors and sends on this for PATH messages to participate in election directed to it of the DSBM * Sends PATH messages to this address The L2 or MAC addresses corresponding to IP multicast addresses are computed algorithmically using a reserved L2 address block (the high order 24-bits are 00:00:5e). The Assigned Numbers RFC [RFC-1700] gives additional details.5.3. Layer 3 to Layer 2 Address Mapping As stated earlier, DSBMs or DSBM clients residing at a L3 device must include a LAN_NHOP_L2 address in the LAN_NHOP information so that L2 devices along the path of a PATH message do not need to separately determine the mapping between the LAN_NHOP_L3 address in the LAN_NHOP object and its corresponding L2 address (for example, using ARP). For the purpose of such mapping at L3 devices, we assume a mapping function called "map_address" that performs the necessary mapping: L2ADDR object = map_addr(L3Addr) We do not specify how the function is implemented; the implementation may simply involve access to the local ARP cache entry or may require performing an ARP function. The function returns a L2ADDR object that need not be interpreted by an L3 device and can be treated as an opaque object. The format of the L2ADDR object is specified in Appendix B.5.4. Raw vs. UDP Encapsulation We assume that the DSBMs, DSBM clients, and SBMs use only raw IP for encapsulating RSVP messages that are forwarded onto a L2 domain. Thus, when a SBM protocol entity on a L3 device forwards a RSVP message onto a L2 segment, it will only use RAW IP encapsulation.Yavatkar, et al. Standards Track [Page 18]RFC 2814 SBM (Subnet Bandwidth Manager) May 20005.5. The Forwarding Rules The message processing and forwarding rules will be described in the context of the sample network illustrated in Figure 2. Figure 2 - A sample network or L2 domain consisting of switched and shared L2 segments .......... .+------+ . +------+ seg A +------+ seg C +------+ seg D +------+| H1 |_______| R1 |_________| S1 |_________| S2 |_______| H2 || | . | | | | | | | |+------+ . +------+ +------+ +------+ +------+ . | /1.0.0.0 . | / . |___ / . seg B | / seg E .......... | / 2.0.0.0 | / +-----------+ | S3 | | | +-----------+ | | | | seg F | ................. ------------------------------ . | | | . +------+ +------+ +------+ . +------+ | H3 | | H4 | | R2 |____________| H5 | | | | | | | . | | +------+ +------+ +------+ . +------+ . . 3.0.0.0 ................. Figure 2 illustrates a sample network topology consisting of three IP subnets (1.0.0.0, 2.0.0.0, and 3.0.0.0) interconnected using two routers. The subnet 2.0.0.0 is an example of a L2 domain consisting of switches, hosts, and routers interconnected using switched segments and a shared L2 segment. The sample network contains the following devices:Yavatkar, et al. Standards Track [Page 19]RFC 2814 SBM (Subnet Bandwidth Manager) May 2000 Device Type SBM Type H1, H5 Host (layer 3) SBM Transparent H2-H4 Host (layer 3) DSBM Client R1 Router (layer 3) SBM R2 Router (layer 3) DSBM for segment F S1 Switch (layer 2) DSBM for segments A, B S2 Switch (layer 2) DSBM for segments C, D, E S3 Switch (layer 2) SBM The following paragraphs describe the rules, which each of these devices should use to forward PATH messages (rules apply to PATH_TEAR messages as well). They are described in the context of the general network illustrated above. While the examples do not address every scenario, they do address most of the interesting scenarios. Exceptions can be discussed separately. The forwarding rules are applied to received PATH messages (routers and switches) or originating PATH messages (hosts), as follows: 1. Determine the interface(s) on which to forward the PATH message using standard forwarding rules: * If there is a LAN_LOOPBACK object in the PATH message, and it carries the address of this device, silently discard the message. (See the section below on "Additional notes on forwarding the PATH message onto a managed segment). * Layer 3 devices use the RSVP session address and perform a routing lookup to determine the forwarding interface(s). * Layer 2 devices use the LAN_NHOP_L2 address in the LAN_NHOP information and MAC forwarding tables to determine the forwarding interface(s). (See the section below on "Additional notes on forwarding the PATH message onto a managed segment") 2. For each forwarding interface:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -