📄 rfc1341.txt
字号:
agents without outside registration or standardization. 2. New standard values must be documented, registered with, and approved by IANA, as described in Appendix F. Where intended for public use, the formats they refer to must also be defined by a published specification, and possibly offered for standardization. The seven standard initial predefined Content-Types are detailed in the bulk of this document. They are: text -- textual information. The primary subtype, "plain", indicates plain (unformatted) text. No special software is required to get the full meaning of the text, aside from support for the indicated character set. Subtypes are to be used for enriched text in forms where application software may enhance the appearance of the text, but such software must not be required in order to get the general idea of the content. Possible subtypes thus include any readable word processor format. A very simple and portable subtype, richtext, is defined in this document. multipart -- data consisting of multiple parts of independent data types. Four initial subtypes are defined, including the primary "mixed" subtype, "alternative" for representing the same data in multiple formats, "parallel" for parts intended to be viewed simultaneously, and "digest" for multipart entities in which each part is of type "message". message -- an encapsulated message. A body of Content-Type "message" is itself a fully formatted RFC 822 conformant message which may contain its own different Content-Type header field. The primary subtype is "rfc822". The "partial" subtype is defined for partial messages, to permit the fragmented transmission of bodies that are thought to be too large to be passed through mail transport facilities. Another subtype, "External-body", is defined for specifying large bodies by reference to an external data source. Borenstein & Freed [Page 8] RFC 1341MIME: Multipurpose Internet Mail ExtensionsJune 1992 image -- image data. Image requires a display device (such as a graphical display, a printer, or a FAX machine) to view the information. Initial subtypes are defined for two widely-used image formats, jpeg and gif. audio -- audio data, with initial subtype "basic". Audio requires an audio output device (such as a speaker or a telephone) to "display" the contents. video -- video data. Video requires the capability to display moving images, typically including specialized hardware and software. The initial subtype is "mpeg". application -- some other kind of data, typically either uninterpreted binary data or information to be processed by a mail-based application. The primary subtype, "octet-stream", is to be used in the case of uninterpreted binary data, in which case the simplest recommended action is to offer to write the information into a file for the user. Two additional subtypes, "ODA" and "PostScript", are defined for transporting ODA and PostScript documents in bodies. Other expected uses for "application" include spreadsheets, data for mail-based scheduling systems, and languages for "active" (computational) email. (Note that active email entails several securityconsiderations, which are discussed later in this memo, particularly in the context of application/PostScript.) Default RFC 822 messages are typed by this protocol as plain text in the US-ASCII character set, which can be explicitly specified as "Content-type: text/plain; charset=us-ascii". If no Content-Type is specified, either by error or by an older user agent, this default is assumed. In the presence of a MIME-Version header field, a receiving User Agent can also assume that plain US-ASCII text was the sender's intent. In the absence of a MIME-Version specification, plain US-ASCII text must still be assumed, but the sender's intent might have been otherwise. RATIONALE: In the absence of any Content-Type header field or MIME-Version header field, it is impossible to be certain that a message is actually text in the US-ASCII character set, since it might well be a message that, using the conventions that predate this document, includes text in another character set or non-textual data in a manner that cannot be automatically recognized (e.g., a uuencoded compressed UNIX tar file). Although there is no fully acceptable alternative to treating such untyped messages as "text/plain; charset=us-ascii", implementors should remain aware that if a message lacks both the MIME-Version and the Content-Type header fields, it may in practice contain almost anything. Borenstein & Freed [Page 9] RFC 1341MIME: Multipurpose Internet Mail ExtensionsJune 1992 It should be noted that the list of Content-Type values given here may be augmented in time, via the mechanisms described above, and that the set of subtypes is expected to grow substantially. When a mail reader encounters mail with an unknown Content- type value, it should generally treat it as equivalent to "application/octet-stream", as described later in this document. 5 The Content-Transfer-Encoding Header Field Many Content-Types which could usefully be transported via email are represented, in their "natural" format, as 8-bit character or binary data. Such data cannot be transmitted over some transport protocols. For example, RFC 821 restricts mail messages to 7-bit US-ASCII data with 1000 character lines. It is necessary, therefore, to define a standard mechanism for re-encoding such data into a 7-bit short-line format. This document specifies that such encodings will be indicated by a new "Content-Transfer-Encoding" header field. The Content-Transfer-Encoding field is used to indicate the type of transformation that has been used in order to represent the body in an acceptable manner for transport. Unlike Content-Types, a proliferation of Content-Transfer- Encoding values is undesirable and unnecessary. However, establishing only a single Content-Transfer-Encoding mechanism does not seem possible. There is a tradeoff between the desire for a compact and efficient encoding of largely-binary data and the desire for a readable encoding of data that is mostly, but not entirely, 7-bit data. For this reason, at least two encoding mechanisms are necessary: a "readable" encoding and a "dense" encoding. The Content-Transfer-Encoding field is designed to specify an invertible mapping between the "native" representation of a type of data and a representation that can be readily exchanged using 7 bit mail transport protocols, such as those defined by RFC 821 (SMTP). This field has not been defined by any previous standard. The field's value is a single token specifying the type of encoding, as enumerated below. Formally: Content-Transfer-Encoding := "BASE64" / "QUOTED-PRINTABLE" / "8BIT" / "7BIT" / "BINARY" / x-token These values are not case sensitive. That is, Base64 and BASE64 and bAsE64 are all equivalent. An encoding type of 7BIT requires that the body is already in a seven-bit mail- ready representation. This is the default value -- that is, Borenstein & Freed [Page 10] RFC 1341MIME: Multipurpose Internet Mail ExtensionsJune 1992 "Content-Transfer-Encoding: 7BIT" is assumed if the Content-Transfer-Encoding header field is not present. The values "8bit", "7bit", and "binary" all imply that NO encoding has been performed. However, they are potentially useful as indications of the kind of data contained in the object, and therefore of the kind of encoding that might need to be performed for transmission in a given transport system. "7bit" means that the data is all represented as short lines of US-ASCII data. "8bit" means that the lines are short, but there may be non-ASCII characters (octets with the high-order bit set). "Binary" means that not only may non-ASCII characters be present, but also that the lines are not necessarily short enough for SMTP transport. The difference between "8bit" (or any other conceivable bit-width token) and the "binary" token is that "binary" does not require adherence to any limits on line length or to the SMTP CRLF semantics, while the bit-width tokens do require such adherence. If the body contains data in any bit-width other than 7-bit, the appropriate bit-width Content-Transfer-Encoding token must be used (e.g., "8bit" for unencoded 8 bit wide data). If the body contains binary data, the "binary" Content-Transfer-Encoding token must be used. NOTE: The distinction between the Content-Transfer-Encoding values of "binary," "8bit," etc. may seem unimportant, in that all of them really mean "none" -- that is, there has been no encoding of the data for transport. However, clear labeling will be of enormous value to gateways between future mail transport systems with differing capabilities in transporting data that do not meet the restrictions of RFC 821 transport. As of the publication of this document, there are no standardized Internet transports for which it is legitimate to include unencoded 8-bit or binary data in mail bodies. Thus there are no circumstances in which the "8bit" or "binary" Content-Transfer-Encoding is actually legal on the Internet. However, in the event that 8-bit or binary mail transport becomes a reality in Internet mail, or when this document is used in conjunction with any other 8-bit or binary-capable transport mechanism, 8-bit or binary bodies should be labeled as such using this mechanism. NOTE: The five values defined for the Content-Transfer- Encoding field imply nothing about the Content-Type other than the algorithm by which it was encoded or the transport system requirements if unencoded. Implementors may, if necessary, define new Content- Transfer-Encoding values, but must use an x-token, which is a name prefixed by "X-" to indicate its non-standard status, Borenstein & Freed [Page 11] RFC 1341MIME: Multipurpose Internet Mail ExtensionsJune 1992 e.g., "Content-Transfer-Encoding: x-my-new-encoding". However, unlike Content-Types and subtypes, the creation of new Content-Transfer-Encoding values is explicitly and strongly discouraged, as it seems likely to hinder interoperability with little potential benefit. Their use is allowed only as the result of an agreement between cooperating user agents. If a Content-Transfer-Encoding header field appears as part of a message header, it applies to the entire body of that message. If a Content-Transfer-Encoding header field appears as part of a body part's headers, it applies only to the body of that body part. If an entity is of type "multipart" or "message", the Content-Transfer-Encoding is not permitted to have any value other than a bit width (e.g., "7bit", "8bit", etc.) or "binary". It should be noted that email is character-oriented, so that
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -