📄 rfc1287.txt
字号:
The following actions are proposed: A) Time Line Construct a specific set of estimates for the time at which the various problems above will arise, and construct a corresponding time-line for development and deployment of a new addressing/routing architecture. Use this time line as a basis for evaluating specific proposals for changes. This is a matter for the IETF. B) New Address Format Explore the options for a next generation address format and develop a plan for migration. Specifically, construct a prototype gateway that does address mapping. Understand the complexity of this task, to guide our thinking about migration options. C) Routing on ADs Take steps to make network aggregates (ADs) the basis of routing. In particular, explore the several options for a global table that maps network numbers to ADs. This is a matter for the IETF. D) Policy-Based Routing Continue the current work on policy based routing. There are several specific objectives. - Seek ways to control the complexity of setting policy (this is a human interface issue, not an algorithm complexity issue). - Understand better the issues of maintaining connection state in gateways. - Understand better the issues of connection state setup.Clark, Chapin, Cerf, Braden, & Hobby [Page 8]RFC 1287 Future of Internet Architecture December 1991 E) Research on Further Aggregation Explore, as a research activity, how ADs should be aggregated into still larger routing elements. - Consider whether the architecture should define the "role" of an AD or an aggregate. - Consider whether one universal routing method or distinct methods should be used inside and outside ADs and aggregates. Existing projects planned for DARTnet will help resolve several of these issues: state in gateways, state setup, address mapping, accounting and so on. Other experiments in the R&D community also bear on this area.3. MULTI-PROTOCOL ARCHITECTURE Changing the Internet to support multiple protocol suites leads to three specific architectural questions: o How exactly will we define "the Internet"? o How would we architect an Internet with n>1 protocol suites, regardless of what the suites are? o Should we architect for partial or filtered connectivity? o How to add explicit support for application gateways into the architecture? 3.1 What is the "Internet"? It is very difficult to deal constructively with the issue of "the multi-protocol Internet" without first determining what we believe "the Internet" is (or should be). We distinguish "the Internet", a set of communicating systems, from "the Internet community", a set of people and organizations. Most people would accept a loose definition of the latter as "the set of people who believe themselves to be part of the Internet community". However, no such "sociological" definition of the Internet itself is likely to be useful. Not too long ago, the Internet was defined by IP connectivity (IP and ICMP were - and still are - the only "required" Internet protocols). If I could PING you, and you could PING me, then we were both on the Internet, and a satisfying working definition ofClark, Chapin, Cerf, Braden, & Hobby [Page 9]RFC 1287 Future of Internet Architecture December 1991 the Internet could be constructed as a roughly transitive closure of IP-speaking systems. This model of the Internet was simple, uniform, and - perhaps most important - testable. The IP- connectivity model clearly distinguished systems that were "on the Internet" from those that were not. As the Internet has grown and the technology on which it is based has gained widespread commercial acceptance, the sense of what it means for a system to be "on the Internet" has changed, to include: * Any system that has partial IP connectivity, restricted by policy filters. * Any system that runs the TCP/IP protocol suite, whether or not it is actually accessible from other parts of the Internet. * Any system that can exchange RFC-822 mail, without the intervention of mail gateways or the transformation of mail objects. * Any system with e-mail connectivity to the Internet, whether or not a mail gateway or mail object transformation is required. These definitions of "the Internet", are still based on the original concept of connectivity, just "moving up the stack". We propose instead a new definition of the Internet, based on a different unifying concept: * "Old" Internet concept: IP-based. The organizing principle is the IP address, i.e., a common network address space. * "New" Internet concept: Application-based. The organizing principle is the domain name system and directories, i.e., a common - albeit necessarily multiform - application name space. This suggests that the idea of "connected status", which has traditionally been tied to the IP address(via network numbers, should instead be coupled to the names and related identifying information contained in the distributed Internet directory.Clark, Chapin, Cerf, Braden, & Hobby [Page 10]RFC 1287 Future of Internet Architecture December 1991 A naming-based definition of "the Internet" implies a much larger Internet community, and a much more dynamic (and unpredictable) operational Internet. This argues for an Internet architecture based on adaptability (to a broad spectrum of possible future developments) rather than anticipation. 3.2 A Process-Based Model of the Multiprotocol Internet Rather than specify a particular "multi-protocol Internet", embracing a pre-determined number of specific protocol architectures, we propose instead a process-oriented model of the Internet, which accommodates different protocol architectures according to the traditional "things that work" principle. A process-oriented Internet model includes, as a basic postulate, the assertion that there is no *steady-state* "multi-protocol Internet". The most basic forces driving the evolution of the Internet are pushing it not toward multi-protocol diversity, but toward the original state of protocol-stack uniformity (although it is unlikely that it will ever actually get there). We may represent this tendency of the Internet to evolve towards homogeneity as the most "thermodynamically stable" state by describing four components of a new process-based Internet architecture: Part 1: The core Internet architecture This is the traditional TCP/IP-based architecture. It is the "magnetic center" of Internet evolution, recognizing that (a) homogeneity is still the best way to deal with diversity in an internetwork, and (b) IP connectivity is still the best basic model of the Internet (whether or not the actual state of IP ubiquity can be achieved in practice in a global operational Internet). "In the beginning", the Internet architecture consisted only of this first part. The success of the Internet, however, has carried it beyond its uniform origins; ubiquity and uniformity have been sacrificed in order to greatly enrich the Internet "gene pool". Two additional parts of the new Internet architecture express the ways in which the scope and extent of the Internet have been expanded. Part 2: Link sharing Here physical resources -- transmission media, networkClark, Chapin, Cerf, Braden, & Hobby [Page 11]RFC 1287 Future of Internet Architecture December 1991 interfaces, perhaps some low-level (link) protocols -- are shared by multiple, non-interacting protocol suites. This part of the architecture recognizes the necessity and convenience of coexistence, but is not concerned with interoperability; it has been called "ships in the night" or "S.I.N.". Coexisting protocol suites are not, of course, genuinely isolated in practice; the ships passing in the night raise issues of management, non-interference, coordination, and fairness in real Internet systems. Part 3: Application interoperability Absent ubiquity of interconnection (i.e., interoperability of the "underlying stacks"), it is still possible to achieve ubiquitous application functionality by arranging for the essential semantics of applications to be conveyed among disjoint communities of Internet systems. This can be accomplished by application relays, or by user agents that present a uniform virtual access method to different application services by expressing only the shared semantics. This part of the architecture emphasizes the ultimate role of the Internet as a basis for communication among applications, rather than as an end in itself. To the extent that it enables a population of applications and their users to move from one underlying protocol suite to another without unacceptable loss of functionality, it is also a "transition enabler". Adding parts 2 and 3 to the original Internet architecture is at best a mixed blessing. Although they greatly increase the scope of the Internet and the size of the Internet community, they also introduce significant problems of complexity, cost, and management, and they usually represent a loss of functionality (particularly with respect to part 3). Parts 2 and 3 represent unavoidable, but essentially undesirable, departures from the homogeneity represented by part 1. Some functionality is lost, and additional system complexity and cost is endured, in order to expand the scope of the Internet. In a perfect world, however, the Internet would evolve and expand without these penalties. There is a tendency, therefore, for the Internet to evolve in favor of the homogeneous architecture represented by part 1, and away from the compromised architectures of parts 2 and 3. Part 4 expresses this tendency.Clark, Chapin, Cerf, Braden, & Hobby [Page 12]RFC 1287 Future of Internet Architecture December 1991 Part 4: Hybridization/Integration. Part 4 recognizes the desirability of integrating similar elements from different Internet protocol architectures to form hybrids that reduce the variability and complexity of the Internet system. It also recognizes the desirability of leveraging the existing Internet infrastructure to facilitate the absorption of "new stuff" into the Internet, applying to "new stuff" the established Internet practice of test, evaluate, adopt. This part expresses the tendency of the Internet, as a system, to attempt to return to the original "state of grace" represented by the uniform architecture of part 1. It is a force acting on the evolution of the Internet, although the Internet will never actually return to a uniform state at any point in the future. According to this dynamic process model, running X.400 mail over RFC 1006 on a TCP/IP stack, integrated IS-IS routing, transport gateways, and the development of a single common successor to the IP and CLNP protocols are all examples of "good things". They represent movement away from the non-uniformity of parts 2 and 3 towards greater homogeneity, under the influence of the "magnetic field" asserted by part 1, following the hybridization dynamic of part 4.4. SECURITY ARCHITECTURE 4.1 Philosophical Guidelines The principal themes for development of an Internet security architecture are simplicity, testability, trust, technology and security perimeter identification. * There is more to security than protocols and cryptographic methods. * The security architecture and policies should be simple enough to be readily understood. Complexity breeds misunderstanding and poor implementation. * The implementations should be testable to determine if the policies are met. * We are forced to trust hardware, software and people to make any security architecture function. We assume that the technical instruments of security policy enforcement are atClark, Chapin, Cerf, Braden, & Hobby [Page 13]RFC 1287 Future of Internet Architecture December 1991 least as powerful as modern personal computers and work stations; we do not require less capable components to be self-protecting (but might apply external remedies such as link level encryption devices). * Finally, it is essential to identify security perimeters at which protection is to be effective. 4.2 Security Perimeters There were four possible security perimeters: link level, net/subnet level, host level, and process/application level. Each imposes different requirements, can admit different techniques, and makes different assumptions about what components of the system must be trusted to be effective. Privacy Enhanced Mail is an example of a process level security system; providing authentication and confidentiality for SNMP is another example. Host level security typically means applying an external security mechanism on the communication ports of a host computer. Network or subnetwork security means applying the external security capability at the gateway/router(s) leading from the subnetwork to the "outside". Link-level security is the traditional point-to-point or media-level (e.g., Ethernet) encryption mechanism. There are many open questions about network/subnetwork security protection, not the least of which is a potential mismatch between host level (end/end) security methods and methods at the network/subnetwork level. Moreover, network level protection does not deal with threats arising within the security perimeter. Applying protection at the process level assumes that the underlying scheduling and operating system mechanisms can be trusted not to prevent the application from applying security when appropriate. As the security perimeter moves downward in the system architecture towards the link level, one must make many assumptions about the security threat to make an argument that enforcement at a particular perimeter is effective. For example, if only link-level encryption is used, one must assume that attacks come only from the outside via communications lines, that hosts, switches and gateways are physically protected, and the people and software in all these components are to be trusted. 4.3 Desired Security Services We need authenticatable distinguished names if we are to implement discretionary and non-discretionary access control at applicationClark, Chapin, Cerf, Braden, & Hobby [Page 14]RFC 1287 Future of Internet Architecture December 1991 and lower levels in the system. In addition, we need enforcement for integrity (anti-modification, anti-spoof and anti-replay defenses), confidentiality, and prevention of denial-of-service. For some situations, we may also need to prevent repudiation of message transmission or to prevent covert channels. We have some building blocks with which to build the Internet security system. Cryptographic algorithms are available (e.g., Data Encryption Standard, RSA, El Gamal, and possibly other public key and symmetric key algorithms), as are hash functions such as MD2 and MD5. We need Distinguished Names (in the OSI sense) and are very much in need of an infrastructure for the assignment of such identifiers, together with widespread directory services for making them known. Certificate concepts binding distinguished names to public keys and binding distinguished names to capabilities and permissions may be applied to good advantage. At the router/gateway level, we can apply address and protocol filters and other configuration controls to help fashion a security system. The proposed OSI Security Protocol 3 (SP3) and Security Protocol 4 (SP4) should be given serious consideration as possible elements of an Internet security architecture.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -