📄 rfc2370.txt
字号:
Network Working Group R. ColtunRequest for Comments: 2370 FORE SystemsSee Also: 2328 July 1998Category: Standards Track The OSPF Opaque LSA OptionStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved.Table Of Contents 1.0 Abstract ................................................. 1 2.0 Overview ................................................. 2 2.1 Organization Of This Document ............................ 2 2.2 Acknowledgments .......................................... 3 3.0 The Opaque LSA ........................................... 3 3.1 Flooding Opaque LSAs ..................................... 4 3.2 Modifications To The Neighbor State Machine .............. 5 4.0 Protocol Data Structures ................................. 6 4.1 Additions To The OSPF Neighbor Structure ................. 6 5.0 Management Considerations ................................ 7 6.0 Security Considerations .................................. 9 7.0 IANA Considerations ...................................... 10 8.0 References ............................................... 10 9.0 Author's Information ..................................... 11 Appendix A: OSPF Data Formats ................................ 12 A.1 The Options Field ........................................ 12 A.2 The Opaque LSA ........................................... 13 Appendix B: Full Copyright Statment .......................... 151.0 Abstract This memo defines enhancements to the OSPF protocol to support a new class of link-state advertisements (LSA) called Opaque LSAs. Opaque LSAs provide a generalized mechanism to allow for the future extensibility of OSPF. Opaque LSAs consist of a standard LSA header followed by application-specific information. The information fieldColtun Standards Track [Page 1]RFC 2370 The OSPF Opaque LSA Option July 1998 may be used directly by OSPF or by other applications. Standard OSPF link-state database flooding mechanisms are used to distribute Opaque LSAs to all or some limited portion of the OSPF topology.2.0 Overview Over the last several years the OSPF routing protocol [OSPF] has been widely deployed throughout the Internet. As a result of this deployment and the evolution of networking technology, OSPF has been extended to support many options; this evolution will obviously continue. This memo defines enhancements to the OSPF protocol to support a new class of link-state advertisements (LSA) called Opaque LSAs. Opaque LSAs provide a generalized mechanism to allow for the future extensibility of OSPF. The information contained in Opaque LSAs may be used directly by OSPF or indirectly by some application wishing to distribute information throughout the OSPF domain. For example, the OSPF LSA may be used by routers to distribute IP to link-layer address resolution information (see [ARA] for more information). The exact use of Opaque LSAs is beyond the scope of this memo. Opaque LSAs consist of a standard LSA header followed by a 32-bit qaligned application-specific information field. Like any other LSA, the Opaque LSA uses the link-state database distribution mechanism for flooding this information throughout the topology. The link- state type field of the Opaque LSA identifies the LSA's range of topological distribution. This range is referred to as the Flooding Scope. It is envisioned that an implementation of the Opaque option provides an application interface for 1) encapsulating application-specific information in a specific Opaque type, 2) sending and receiving application-specific information, and 3) if required, informing the application of the change in validity of previously received information when topological changes are detected.2.1 Organization Of This Document This document first defines the three types of Opaque LSAs followed by a description of OSPF packet processing. The packet processing sections include modifications to the flooding procedure and to the neighbor state machine. Appendix A then gives the packet formats.Coltun Standards Track [Page 2]RFC 2370 The OSPF Opaque LSA Option July 19982.2 Acknowledgments The author would like to thank Dennis Ferguson, Acee Lindem, John Moy, Sandra Murphy, Man-Kit Yeung, Zhaohui "Jeffrey" Zhang and the rest of the OSPF Working Group for the ideas and support they have given to this project.3.0 The Opaque LSA Opaque LSAs are types 9, 10 and 11 link-state advertisements. Opaque LSAs consist of a standard LSA header followed by a 32-bit aligned application-specific information field. Standard link-state database flooding mechanisms are used for distribution of Opaque LSAs. The range of topological distribution (i.e., the flooding scope) of an Opaque LSA is identified by its link-state type. This section documents the flooding of Opaque LSAs. The flooding scope associated with each Opaque link-state type is defined as follows. o Link-state type 9 denotes a link-local scope. Type-9 Opaque LSAs are not flooded beyond the local (sub)network. o Link-state type 10 denotes an area-local scope. Type-10 Opaque LSAs are not flooded beyond the borders of their associated area. o Link-state type 11 denotes that the LSA is flooded throughout the Autonomous System (AS). The flooding scope of type-11 LSAs are equivalent to the flooding scope of AS-external (type-5) LSAs. Specifically type-11 Opaque LSAs are 1) flooded throughout all transit areas, 2) not flooded into stub areas from the backbone and 3) not originated by routers into their connected stub areas. As with type-5 LSAs, if a type-11 Opaque LSA is received in a stub area from a neighboring router within the stub area the LSA is rejected. The link-state ID of the Opaque LSA is divided into an Opaque type field (the first 8 bits) and a type-specific ID (the remaining 24 bits). The packet format of the Opaque LSA is given in Appendix A. Section 7.0 describes Opaque type allocation and assignment. The responsibility for proper handling of the Opaque LSA's flooding scope is placed on both the sender and receiver of the LSA. The receiver must always store a valid received Opaque LSA in its link- state database. The receiver must not accept Opaque LSAs that violate the flooding scope (e.g., a type-11 (domain-wide) Opaque LSA is not accepted in a stub area). The flooding scope effects both theColtun Standards Track [Page 3]RFC 2370 The OSPF Opaque LSA Option July 1998 synchronization of the link-state database and the flooding procedure. The following describes the modifications to these procedures that are necessary to insure conformance to the Opaque LSA's Scoping Rules.3.1 Flooding Opaque LSAs The flooding of Opaque LSAs must follow the rules of Flooding Scope as specified in this section. Section 13 of [OSPF] describes the OSPF flooding procedure. The following describes the Opaque LSA's type-specific flooding restrictions. o If the Opaque LSA is type 9 (the flooding scope is link-local) and the interface that the LSA was received on is not the same as the target interface (e.g., the interface associated with a particular target neighbor), the Opaque LSA must not be flooded out that interface (or to that neighbor). An implementation should keepk track of the IP interface associated with each Opaque LSA having a link-local flooding scope. o If the Opaque LSA is type 10 (the flooding scope is area-local) and the area associated with Opaque LSA (upon reception) is not the same as the area associated with the target interface, the Opaque LSA must not be flooded out the interface. An implementation should keep track of the OSPF area associated with each Opaque LSA having an area-local flooding scope. o If the Opaque LSA is type 11 (the LSA is flooded throughout the AS) and the target interface is associated with a stub area the Opaque LSA must not be flooded out the interface. A type-11 Opaque LSA that is received on an interface associated with a stub area must be discarded and not acknowledged (the neighboring router has flooded the LSA in error). When opaque-capable routers and non-opaque-capable OSPF routers are mixed together in a routing domain, the Opaque LSAs are not flooded to the non-opaque-capable routers. As a general design principle, optional OSPF advertisements are only flooded to those routers that understand them. An opaque-capable router learns of its neighbor's opaque capability at the beginning of the "Database Exchange Process" (see Section 10.6 of [OSPF], receiving Database Description packets from a neighbor in state ExStart). A neighbor is opaque-capable if and only if it sets the O-bit in the Options field of its Database Description packets; the O-bit is not set in packets other than Database DescriptionColtun Standards Track [Page 4]RFC 2370 The OSPF Opaque LSA Option July 1998 packets. Then, in the next step of the Database Exchange process, Opaque LSAs are included in the Database summary list that is sent to the neighbor (see Sections 3.2 below and 10.3 of [OSPF]) if and only if the neighbor is opaque capable. When flooding Opaque-LSAs to adjacent neighbors, a opaque-capable router looks at the neighbor's opaque capability. Opaque LSAs are only flooded to opaque-capable neighbors. To be more precise, in Section 13.3 of [OSPF], Opaque LSAs are only placed on the link-state retransmission lists of opaque-capable neighbors. However, when send ing Link State Update packets as multicasts, a non-opaque-capable neighbor may (inadvertently) receive Opaque LSAs. The non-opaque- capable router will then simply discard the LSA (see Section 13 of [OSPF], receiving LSAs having unknown LS types).3.2 Modifications To The Neighbor State Machine The state machine as it exists in section 10.3 of [OSPF] remains unchanged except for the action associated with State: ExStart, Event: NegotiationDone which is where the Database summary list is built. To incorporate the Opaque LSA in OSPF this action is changed to the following. State(s): ExStart Event: NegotiationDone New state: Exchange Action: The router must list the contents of its entire area link-state database in the neighbor Database summary list. The area link-state database consists of the Router LSAs, Network LSAs, Summary LSAs and types 9 and 10 Opaque LSAs contained in the area structure, along with AS External and type-11 Opaque LSAs contained in the global structure. AS External and type-11 Opaque LSAs are omitted from a virtual neighbor's Database summary list. AS External LSAs and type-11 Opaque LSAs are omitted from the Database summary list if the area has been configured as a stub area (see Section 3.6 of [OSPF]). Type-9 Opaque LSAs are omitted from the Database summary list if the interface associated with the neighbor is not the interface associated with the Opaque LSA (as noted upon reception).Coltun Standards Track [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -