📄 rfc2166.txt
字号:
Network Working Group D. BryantRequest for Comments: 2166 3Com CorpCategory: Informational P. Brittain Data Connection Ltd. June 1997 APPN Implementer's Workshop Closed Pages Document DLSw v2.0 EnhancementsStatus of this MemoThis memo provides information for the Internet community. This memodoes not specify an Internet standard of any kind. Distribution ofthis memo is unlimited.Abstract This document specifies - a set of extensions to RFC 1795 designed to improve the scalability of DLSw - clarifications to RFC 1795 in the light of the implementation experience to-date. It is assumed that the reader is familiar with DLSw and RFC 1795. No effort has been made to explain these existing protocols or associated terminology. This document was developed in the DLSw Related Interest Group (RIG) of the APPN Implementers Workshop (AIW). If you would like to participate in future DLSw discussions, please subscribe to the DLSw RIG mailing lists by sending a mail to majordomo@raleigh.ibm.com specifying 'subscribe aiw-dlsw' as the body of the message.Table of Contents 1. INTRODUCTION ................................................ 3 2. HALT REASON CODES............................................ 3 3. SCOPE OF SCALABILITY ENHANCEMENTS............................ 4 4. OVERVIEW OF SCALABILITY ENHANCEMENTS......................... 6 5. MULTICAST GROUPS AND ADDRESSING.............................. 7 5.1 USING MULTICAST GROUPS...................................... 8 5.2 DLSW MULTICAST ADDRESSES.................................... 8 6. DLSW MESSAGE TRANSPORTS...................................... 8 6.1 TCP/IP CONNECTIONS ON DEMAND................................ 9 6.1.1 TCP CONNECTIONS ON DEMAND RACE CONDITIONS................ 9Bryant & Brittain Informational [Page 1]RFC 2166 APPN Implementer's Workshop June 1997 6.2 SINGLE SESSION TCP/IP CONNECTIONS........................... 9 6.2.1 EXPEDITED SINGLE SESSION TCP/IP CONNECTIONS.............. 10 6.2.1.1 TCP PORT NUMBERS...................................... 10 6.2.1.2 TCP CONNECTION SETUP.................................. 10 6.2.1.3 SINGLE SESSION SETUP RACE CONDITIONS.................. 10 6.2.1.4 TCP CONNECTIONS WITH NON-MULTICAST CAPABLE DLSW PEERS. 11 6.3 UDP DATAGRAMS............................................... 12 6.3.1 VENDOR SPECIFIC FUNCTIONS OVER UDP....................... 12 6.3.2 UNICAST UDP DATAGRAMS.................................... 12 6.3.3 MULTICAST UDP DATAGRAMS.................................. 13 6.4 UNICAST UDP DATAGRAMS IN LIEU OF IP MULTICAST............... 13 6.5 TCP TRANSPORT............................................... 14 7. MIGRATION SUPPORT............................................ 14 7.1 CAPABILITIES EXCHANGE....................................... 14 7.2 CONNECTING TO NON-MULTICAST CAPABLE NODES................... 15 7.3 COMMUNICATING WITH MULTICAST CAPABLE NODES.................. 15 8. SNA SUPPORT.................................................. 16 8.1 ADDRESS RESOLUTION.......................................... 16 8.2 EXPLORER FRAMES............................................. 16 8.3 CIRCUIT SETUP............................................... 17 8.4 EXAMPLE SNA SSP MESSAGE SEQUENCE............................ 17 8.5 UDP RELIABILITY............................................. 19 8.5.1 RETRIES.................................................. 19 9. NETBIOS...................................................... 20 9.1 ADDRESS RESOLUTION.......................................... 21 9.2 EXPLORER FRAMES............................................. 21 9.3 CIRCUIT SETUP............................................... 21 9.4 EXAMPLE NETBIOS SSP MESSAGE SEQUENCE........................ 22 9.5 MULTICAST RELIABILITY AND RETRIES........................... 24 10. SEQUENCING.................................................. 24 11. FRAME FORMATS............................................... 25 11.1 MULTICAST CAPABILITIES CONTROL VECTOR...................... 25 11.1.1 DLSW CAPABILITIES NEGATIVE RESPONSE..................... 26 11.2 UDP PACKETS................................................ 26 11.3 VENDOR SPECIFIC UDP PACKETS................................ 27 12. COMPLIANCE STATEMENT........................................ 28 13. SECURITY CONSIDERATIONS..................................... 29 14. ACKNOWLEDGEMENTS............................................ 29 15. AUTHORS' ADDRESSES.......................................... 30 16. APPENDIX - CLARIFICATIONS TO RFC 1795....................... 31Bryant & Brittain Informational [Page 2]RFC 2166 APPN Implementer's Workshop June 1997 1. Introduction This document defines v2.0 of Data Link Switching (DLSw) in the form of a set of enhancements to RFC 1795. These enhancements are designed to be fully backward compatible with existing RFC 1795 implementations. As a compatible set of enhancements to RFC 1795, this document does not replace or supersede RFC 1795. The bulk of these enhancements address scalability issues in DLSw v1.0. Reason codes have also been added to the HALT_DL and HALT_DL_NOACK SSP messages in order to improve the diagnostic information available. Finally, the appendix to this document lists a number of clarifications to RFC 1795 where the implementation experience to- date has shown that the original RFC was ambiguous or unclear. These clarifications should be read alongside RFC 1795 to obtain a full specification of the base v1.0 DLSw standard.2. HALT Reason codes RFC 1795 provides no mechanism for a DLSw to communicate to its peer the reason for dropping a circuit. DLSw v2.0 adds reason code fields to the HALT_DL and HALT_DL_NOACK SSP messages to carry this information. The reason code is carried as 6 bytes of data after the existing SSP header. The format of these bytes is as shown below. Byte Description 0-1 Generic HALT reason code in byte normal format 2-5 Vendor-specific detailed reason code The generic HALT reason code takes one of the following decimal values (which are chosen to match the disconnect reason codes specified in the DLSw MIB). 1 - Unknown error 2 - Received DISC from end-station 3 - Detected DLC error with end-station 4 - Circuit-level protocol error (e.g., pacing) 5 - Operator-initiated (mgt station or local console) The vendor-specific detailed reason code may take any value.Bryant & Brittain Informational [Page 3]RFC 2166 APPN Implementer's Workshop June 1997 All V2.0 DLSws must include this information on all HALT_DL and HALT_DL_NOACK messages sent to v2.0 DLSw peers. For backwards compatibility with RFC 1795, DLSw V2.0 implementations must also accept a HALT_DL or HALT_DL_NOACK message received from a DLSw peer that does not carry this information (i.e. RFC 1795 format for these SSP messages).3. Scope of Scalability Enhancements The DLSw Scalability group of the AIW identified a number of scalability issues associated with existing DLSw protocols as defined in RFC 1795: - Administration RFC 1795 implies the need to define the transport address of all DLSw peers at each DLSw. In highly meshed situations (such as those often found in NetBIOS networks), the resultant administrative burden is undesirable. - Address Resolution RFC 1795 defines point to point TCP (or other reliable transport protocol) connections between DLSw peers. When attempting to discover the location of an unknown resource, a DLSw sends an address resolution packet to each DLSw peer over these connections. In highly meshed configurations, this can result in a very large number of packets in the transport network. Although each packet is sent individually to each DLSw peer, they are each identical in nature. Thus the transport network is burdened with excessive numbers of identical packets. Since the transport network is most commonly a wide area network, where bandwidth is considered a precious resource, this packet duplication is undesirable. - Broadcast Packets In addition to the address resolution packets described above, RFC 1795 also propagates NetBIOS broadcast packets into the transport network. The UI frames of NetBIOS are sent as LAN broadcast packets. RFC 1795 propagates these packets over the point to point transport connections to each DLSw peer. In the same manner as above, this creates a large number of identical packets in the transport network, and hence is undesirable. Since NetBIOS UI frames can be sent by applications, it is difficult to predict or control the rate and quantity of such traffic. This compounds the undesirability of the existing RFC 1795 propagation method for these packets.Bryant & Brittain Informational [Page 4]RFC 2166 APPN Implementer's Workshop June 1997 - TCP (transport connection) Overhead As defined in RFC 1795, each DLSw maintains a transport connection to its DLSw peers. Each transport connection guarantees in order packet delivery. This is accomplished using acknowledgment and sequencing algorithms which require both CPU and memory at the DLSw endpoints in direct proportion to the number transport connections. The DLSw Scalability group has identified two scenarios where the number of transport connections can become significant resulting in excessive overhead and corresponding equipment costs (memory and CPU). The first scenario is found in highly meshed DLSw configurations where the number of transport connections approximates n2 (where n is the number of DLSw peers). This is typically found in DLSw networks supporting NetBIOS. The second scenario is found in networks where many remote locations communicate to few central sites. In this case, the central sites must support n transport connections (where n is the number of remote sites). In both scenarios the resultant transport connection overhead is considered undesirable depending upon the value of n. - LLC2 overhead RFC 1795 specifies that each DLSw provides local termination for the LLC2 (SDLC or other SNA reliable data link protocol) sessions traversing the SSP. Because these reliable data links provide guaranteed in order packet delivery, the memory and CPU overhead of maintaining these connections can also become significant. This is particularly undesirable in the second scenario described above, because the number of reliable connections maintained at the central site is the aggregate of the connections maintained at each remote site. It is not the intent of this document to address all the undesirable scalability issues associated with RFC 1795. This paper identifies protocol enhancements to RFC 1795 using the inherent multicast capabilities of the underlying transport network to improve the scalability of RFC 1795. It is believed that the enhancements defined, herein, address many of the issues identified above, such as administration, address resolution, broadcast packets, and, to a lesser extent, transport overhead. This paper does not address LLC2 overhead. Subsequent efforts by the AIW and/or DLSw Scalability group may address the unresolved scalability issues.Bryant & Brittain Informational [Page 5]RFC 2166 APPN Implementer's Workshop June 1997 While it is the intent of this paper to accommodate all transport protocols as best as is possible, it is recognized that the multicast capabilities of many protocols is not yet well defined, understood, or implemented. Since TCP is the most prevalent DLSw transport protocol in use today, the DLSw Scalability group has chosen to focus its definition around IP based multicast services. This document only addresses the implementation detail of IP based multicast services. This proposal does not consider the impacts of IPv6 as this was considered too far from widespread use at the time of writing.4. Overview of Scalability Enhancements This paper describes the use of multicast services within the transport network to improve the scalability of DLSw based networking. There are only a few main components of this proposal: - Single session TCP connections RFC 1795 defines a negotiation protocol for DLSw peers to choose either two unidirectional or one bi-directional TCP connection. DLSws implementing the enhancements described in this document must support and use(whenever required and possible)a single bi- directional TCP connection between DLSw peers. That is to say that the single tunnel negotiation support of RFC 1795 is a prerequisite function to this set of enhancements. Use of two unidirectional TCP connections is only allowed (and required)for migration purposes when communicating with DLSw peers that do not implement these enhancements. This document also specifies a faster method for bringing up a single TCP connection between two DLSw peers than the negotiation used in RFC 1795. This faster method, detailed in section 6.2.1, must be used where both peers are known to support DLSw v2.0.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -