📄 rfc1932.txt
字号:
configuration could overcome loss of path information was posed in favor of retaining the use of the EGP protocol defined in the now historic RFC-904 [11]. This turned out to be unmanageable, with routing problems occurring when topology was changed elsewhere.8. IP Over ATM Proposals8.1 The Classical IP Model The Classical IP Model was suggested at the Spring 1993 IETF meeting [8] and retains the classical IP subnet architecture. This model simply consists of cascading instances of IP subnets with IP-level (or L3) routers at IP subnet borders. An example realization of this model consists of a concatenation of three IP subnets. This is shown in Figure 5. Forwarding IP packets over this Classical IP model is straight forward using already well established routing techniques and protocols. SVC-based ATM IP subnets are simplified in that they: o limit the number of hosts which must be directly connected at any given time to those that may actually exchange traffic. o The ATM network is capable of setting up connections between any pair of hosts. Consistent with the standard IP routing algorithm [2] connectivity to the "outside" world is achieved only through a router, which may provide firewall functionality if so desired. o The IP subnet supports an efficient mechanism for address resolution. Issues addressed by the IP Over ATM Working Group, and some of the resolutions, for this model are:Cole, Shur & Villamizar Informational [Page 22]RFC 1932 IP over ATM: A Framework Document April 1996 o Methods of encapsulation and multiplexing. This issue is addressed in RFC-1483 [6], in which two methods of encapsulation are defined, an LLC/SNAP and a per-VC multiplexing option. o The definition of an address resolution server (defined in RFC-1577). o Defining the default MTU size. This issue is addressed in RFC-1626 [1] which proposes the use of the MTU discovery protocol (RFC-1191 [9]). o Support for IP multicasting. In the summer of 1994, work began on the issue of supporting IP multicasting over the SVC LATM model. The proposal for IP multicasting is currently defined by a set of IP over ATM WG Works in Progress, referred to collectively as the IPMC documents. In order to support IP multicasting the ATM subnet must either support point-to- multipoint SVCs, or multicast servers, or both. o Defining interim SVC parameters, such as QoS parameters and time-out values. o Signaling and negotiations of parameters such as MTU size and method of encapsulation. RFC-1755 [10] describes an implementation agreement for routers signaling the ATM network to establish SVCs initially based upon the ATM Forum's UNI version 3.0 specification [4], and eventually to be based upon the ATM Forum's UNI version 3.1 and later specifications. Topics addressed in RFC-1755 include (but are not limited to) VC management procedures, e.g., when to time-out SVCs, QOS parameters, service classes, explicit setup message formats for various encapsulation methods, node (host or router) to node negotiations, etc. RFC-1577 is also applicable to PVC-based subnets. Full mesh PVC connectivity is required. For more information see RFC-1577 [8].8.2 The ROLC NHRP Model The Next Hop Resolution Protocol (NHRP), currently a work in progress defined by the Routing Over Large Clouds Working Group (ROLC), performs address resolution to accomplish direct connections across IP subnet boundaries. NHRP can supplement RFC-1577 ARP. There has been recent discussion of replacing RFC-1577 ARP with NHRP. NHRP can also perform a proxy address resolution to provide the address of the border router serving a destination off of the NBMA which is onlyCole, Shur & Villamizar Informational [Page 23]RFC 1932 IP over ATM: A Framework Document April 1996 served by a single router on the NBMA. NHRP as currently defined cannot be used in this way to support addresses learned from routers for which the same destinations may be heard at other routers, without the risk of creating persistent routing loops.8.3 "Conventional" Model The "Conventional Model" assumes that a router can relay IP packets cell by cell, with the VPI/VCI identifying a flow between adjacent routers rather than a flow between a pair of nodes. A latency advantage can be provided if cell interleaving from multiple IP packets is allowed. Interleaving frames within the same VCI requires an ATM AAL such as AAL3/4 rather than AAL5. Cell forwarding is accomplished through a higher level mapping, above the ATM VCI layer. The conventional model is not under consideration by the IP/ATM WG. The COLIP WG has been formed to develop protocols based on the conventional model.8.4 The Peer Model The Peer Model places IP routers/gateways on an addressing peer basis with corresponding entities in an ATM cloud (where the ATM cloud may consist of a set of ATM networks, inter-connected via UNI or P-NNI interfaces). ATM network entities and the attached IP hosts or routers exchange call routing information on a peer basis by algorithmically mapping IP addressing into the NSAP space. Within the ATM cloud, ATM network level addressing (NSAP-style), call routing and packet formats are used. In the Peer Model no provision is made for selection of primary path and use of alternate paths in the event of primary path failure in reaching multihomed non-ATM destinations. This will limit the topologies for which the peer model alone is applicable to only those topologies in which non-ATM networks are singly homed, or where loss of backup connectivity is not an issue. The Peer Model may be used to avoid the need for an address resolution protocol and in a proxy- ARP mode for stub networks, in conjunction with other mechanisms suitable to handle multihomed destinations. During the discussions of the IP over ATM working group, it was felt that the problems with the end-to-end peer model were much harder than any other model, and had more unresolved technical issues. While encouraging interested individuals/companies to research this area, it was not an initial priority of the working group to address these issues. The ATM Forum Network Layer Multiprotocol Working Group has reached a similar conclusion.Cole, Shur & Villamizar Informational [Page 24]RFC 1932 IP over ATM: A Framework Document April 19968.5 The PNNI and the Integrated Models The Integrated model (proposed and under study within the Multiprotocol group of ATM Forum) considers a single routing protocol to be used for both IP and for ATM. A single routing information exchange is used to distribute topological information. The routing computation used to calculate routes for IP will take into account the topology, including link and node characteristics, of both the IP and ATM networks and calculates an optimal route for IP packets over the combined topology. The PNNI is a hierarchical link state routing protocol with multiple link metrics providing various available QoS parameters given current loading. Call route selection takes into account QoS requirements. Hysteresis is built into link metric readvertisements in order to avoid computational overload and topological hierarchy serves to subdivide and summarize complex topologies, helping to bound computational requirements. Integrated Routing is a proposal to use PNNI routing as an IP routing protocol. There are several sets of technical issues that need to be addressed, including the interaction of multiple routing protocols, adaptation of PNNI to broadcast media, support for NHRP, and others. These are being investigated. However, the ATM Forum MPOA group is not currently performing this investigation. Concerned individuals are, with an expectation of bringing the work to the ATM Forum and the IETF. PNNI has provisions for carrying uninterpreted information. While not yet defined, a compatible extension of the base PNNI could be used to carry external routing attributes and avoid the routing loop problems described in Section 7.Cole, Shur & Villamizar Informational [Page 25]RFC 1932 IP over ATM: A Framework Document April 1996 ++++++++++++++++++++++++++++++++++++++++++ + .------------. .------------. + .---------. + .-: :-. .-: :-. + : Host or >-+-< : Single ATM : >--< : Single ATM : >-+-----\ : Router : + : : Domain : : : : Domain : : + : --------- + -: :- -: :- + .---^----. + ------------ ------------ + : Router : + .------------. + ---v---- .---------. + .-: :-. + : : Host or >-+- ... ... --< : Single ATM : >-+-----/ : Router : + : : Domain : : + --------- + ATM Cloud -: :- + + ------------ + ++++++++++++++++++++++++++++++++++++++++++ Note: IS within ATM cloud are ATM IS Figure 6: The ATM transition model assuming the presence of gateways or routers between the ATM networks and the ATM peer networks.8.6 Transition Models Finally, it is useful to consider transition models, lying somewhere between the Classical IP Models and the Peer and Integrated Models. Some possible architectures for transition models have been suggested by Fong Liaw. Others are possible, for example Figure 6 showing a Classical IP transition model which assumes the presence of gateways between ATM networks and ATM Peer networks. Some of the models described in the prior sections, most notably the Integrated Model, anticipate the need for mixed environment with complex routing topologies. These inherently support transition (possibly with an indefinite transition period). Models which provide no transition support are primarily of interest to new deployments which make exclusive, or near exclusive use of ATM or deployments capable of wholesale replacement of existing networks or willing to retain only non-ATM stub networks. For some models, most notably the Peer Model, the ability to attach to a large non-ATM or mixed internetwork is infeasible without routing support at a higher level, or at best may pose interconnection topology constraints (for example: single point of attachment and a static default route). If a particular model requires routing support at a higher level a large deployment will need to be subdivided to provide scalability at the higher level, which for some models degenerates back to the Classical model.Cole, Shur & Villamizar Informational [Page 26]RFC 1932 IP over ATM: A Framework Document April 19969. Application of the Working Group's and Related Documents The IP Over ATM Working Group has generated several Works in Progress and RFCs. This section identifies the relationship of these and other related documents to the various IP Over ATM Models identified in this document. The documents and RFCs produced to date are the following references, RFC-1483 [6], RFC-1577 [8], RFC-1626 [1], RFC- 1755 [10] and the IPMC documents. The ROLC WG has produced the NHRP document. Table 5 gives a summary of these documents and their relationship to the various IP Over ATM Models.Acknowledgments This memo is the direct result of the numerous discussions of the IP over ATM Working Group of the Internet Engineering Task Force. The authors also had the benefit of several private discussions with H. Nguyen of AT&T Bell Laboratories. Brian Carpenter of CERN was kind enough to contribute the TULIP and TUNIC sections to this memo. Grenville Armitage of Bellcore was kind enough to contribute the sections on VC binding, encapsulations and the use of B-LLI information elements to signal such bindings. The text of Appendix A was pirated liberally from Anthony Alles' of Cisco posting on the IP over ATM discussion list (and modified at the authors' discretion). M. Ohta provided a description of the Conventional Model (again which the authors modified at their discretion). This memo also has benefitted from numerous suggestions from John T. Amenyo of ANS, Joel Halpern of Newbridge, and Andy Malis of Ascom-Timplex. Yakov Rekhter of Cisco provided valuable comments leading to the clarification of normal loop free NHRP operation and the potential for routing loop problems only with the improper use of NHRP. Documents Summary ----------------+--------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -