📄 rfc1634.txt
字号:
Network Working Group M. AllenRequest For Comments: 1634 Novell, Inc.Obsoletes: 1551, 1362 May 1994Category: Informational Novell IPX Over Various WAN Media (IPXWAN)Status of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract This document describes how Novell IPX operates over various WAN media. Specifically, it describes the common "IPX WAN" protocol Novell uses to exchange necessary router to router information prior to exchanging standard IPX routing information and traffic over WAN datalinks. This document supercedes RFC 1362 and RFC 1551. The changes from RFC 1551 are to correct a problem in the wording when an RFC 1362 router talks to an RFC 1551 router and to allow numbers to be specified in a Router Name.Table of Contents 1. Introduction ................................................. 2 1.1 Operation Over PPP ........................................... 2 1.2 Operation Over X.25 Switched Virtual Circuits ................ 2 1.3 Operation Over X.25 Permanent Virtual Circuits ............... 3 1.4 Operation Over Frame Relay ................................... 3 1.5 Operation Over Other WAN Media ............................... 3 2. Glossary Of Terms ............................................ 4 3. IPX WAN Protocol Description ................................. 4 3.1 The Initial Negotiation ...................................... 5 3.2 Information Exchange ......................................... 9 3.3 NAK Packets .................................................. 10 4. Information Exchange Packet Formats .......................... 10 4.1 Timer Request Packet ......................................... 12 4.2 Timer Response Packet ........................................ 15 4.3 Information Request Packet ................................... 16 4.4 Information Response Packet .................................. 19 5. Running Unnumbered RIP ....................................... 20 6. Workstation Connectivity ..................................... 20 7. On-demand, Statically Routed Links ........................... 20 8. References ................................................... 22 9. Security Considerations ...................................... 22 10. Author's Address.............................................. 23Allen [Page 1]RFC 1634 IPXWAN May 19941. Introduction This document describes how Novell IPX operates over various WAN media. It is strongly motivated by a desire for IPX to treat ALL wide area links in the same manner. Sections 3 and 4 describe this common "IPX WAN" protocol. The IPX WAN protocol operation begins immediately after link establishment. While IPX is a connectionless datagram protocol, WANs are often connection-oriented. Different WANs have different methods of link establishment. The subsections of section 1 of this document describe what link establishment means to IPX for different media. They also describe other WAN-media-dependent aspects of IPX operation, such as protocol identification, frame encapsulation, and link tear down.1.1 Operation Over PPP IPX uses PPP [1] when operating over point-to-point synchronous and asynchronous networks. With PPP, link establishment means the IPX NCP [4] reaches the Open state. NetWare IPX will negotiate down to a null set of NCP options, and uses normal frame encapsulation as defined by PPP. The IPXWAN protocol MUST NOT occur until the IPX NCP reaches the Open state. Options negotiated by the IPXWAN protocol MUST supercede any options negotiated by the IPXCP. PPP allows either side of a connection to stop forwarding IPX if one end sends an IPXCP or an LCP Terminate-Request. When a router detects this, it will immediately reflect the lost connectivity in its routing information database instead of naturally aging it out.1.2 Operation over X.25 Switched Virtual Circuits With X.25, link establishment means successfully opening an X.25 virtual circuit. As specified in RFC-1356, "Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode" [2], the protocol identifier 0x800000008137 is used in the X.25 Call User Data field of the Call Request frame, and indicates that the virtual circuit will be devoted to IPX. Furthermore, each IPX packet is encapsulated directly in X.25 data frame sequences without additional framing. Either side of the virtual circuit may close it, thereby tearing down the IPX link. When a router detects this, it will immediately reflect the lost connectivity in its routing information database instead ofAllen [Page 2]RFC 1634 IPXWAN May 1994 naturally aging it out.1.3 Operation over X.25 Permanent Virtual Circuits The nature of X.25 PVC's is that no call request is made. When the router is informed that X.25 Layer 2 is up, the router should assume that link establishment is complete. Each IPX packet is encapsulated in an X.25 data frame sequence without additional framing. Novell IPX assumes a particular X.25 permanent circuit is devoted to the use of IPX. If a router receives a layer 2 error condition (e.g., X.25 Restart), it should reflect lost connectivity for the permanent circuits in its routing information database and re-perform the necessary steps to obtain a full IPX connection.1.4 Operation over Frame Relay Permanent Virtual Circuits To determine when a permanent virtual circuit (PVC) has become active or inactive, the router interacts periodically with either a private Frame Relay switch or a public Frame Relay network. The method used depends on the switch or service provider. Some support [7], section 6l others support [3], Annex D. Novell supports both methods. When a router is restarted, IPXWAN exchanges over active Frame Relay PVCs (that is, PVCs that have remained active before and after restart) can begin immediately. Each IPX packet is encapsulated in a Frame Relay frame sequence as defined in [3] without additional framing. When a router detects that a Frame Relay PVC has transitioned from an inactive to an active state, link establishment is considered complete and IPXWAN exchange over this newly activated link begins. When an active PVC becomes inactive, the router reflects the lost connectivity in its routing information database.1.5 Operation over other WAN media Additional WAN media will be added here as specifications are developed.Allen [Page 3]RFC 1634 IPXWAN May 19942. Glossary Of Terms Primary Network Number: Every IPX WAN router has a "primary network number". This is an IPX network number unique to the entire internet. This number will be a permanently assigned network number for the router. Those readers familiar with NetWare 3.x servers should realize that this is the "Internal" network number. Router Name: Every IPX WAN router must have a "Router Name". This is a symbolic name given to the router. Its purpose is to allow routers to know who they are connected to after link establishment - particularly for network management purposes. A symbolic name conveys more information to an operator than a set of numbers. The symbolic name should be between 1 and 47 characters in length containing the characters 'A' through 'Z', '0' through '9', underscore (_), hyphen (-) and "at" sign (@). The string of characters should be followed by a null character (byte of zero) and padded to 48 characters using the null character. Those readers familiar with NetWare 3.x servers should realize that the file server name is the Router Name. For workstation (client) connectivity, it is useful if the client connection software is configured with a symbolic name reflecting the name of the client. This allows a router management utility to determine which connection connects with which client/router. If no name is configured, it is recommended that a default string such as "DIAL-IN-CLIENT" is used.3. IPX WAN Protocol Description After the underlying data link connection is established as described in the preceding media dependant description, the IPXWAN protocol is activated to exchange identities and determine certain operational charactaristics of the link. There are two steps in the IPXWAN operation: - Negotiating master/slave role and choice of routing protocol. The master/slave roles persist for the IPXWAN exchanges only; - Information exchange of final router configuration. After these steps are concluded, transmission of IPX routing packets begins - using the routing protocol negotiated - as well asAllen [Page 4]RFC 1634 IPXWAN May 1994 transmission of IPX data traffic.3.1 The Initial Negotiation The first exchange of packets decides the master/slave roles and the routing protocol to be used on the link and gauges the link delay for the routing metrics. The initial negotiation is the same for all protocols. +---------------+ +---------------+ | Timer Request | | Timer Request | +---------------+ +---------------+ \---->\ /<----/ \ / x / \ /\ /<----/ \---->\ /\ / \ / \ / \ / \ / My primary \ / My primary \ / network address\ / network address\ \ is larger / \ is smaller / \ / \ / \ / \ / \ / \ / \/ \/ MASTER SLAVE +----------------+ <----------------+ Timer Response + +----------------+ After link establishment, both sides of the link send Timer Request packets and start a timer waiting for a Timer Response. These Timer Requests are sent every 20 seconds until a response is received or a descision is made that the remote node is not responding. This could be after a predefined time (min. 60 seconds) or a number of retries (e.g., 16). In composing the Timer Request, the router or workstation takes into consideration: - Which types of routing protocols it supports; - Whether it is prepared to assign a network address to the link; - For workstations, whether they require the ability to specify their network/NIC address on a reconnect;Allen [Page 5]RFC 1634 IPXWAN May 1994 - Whether it is able to support IPX header compression [6]. For each routing protocol supported, place an option in the Timer Request packet. The Routing Type options should be added in the originator's order of preference with the most preferred option first. Some of the newer (or modified) IPX routing protocols do not have the requirement to allocate a network number on a WAN link. This type of routing protocol has the advantage of potentially simpler configuration as no network number pools are necessary for WAN links. However, these router implementations may still wish to interoperate with the older IPXWAN implementations which are able to allocate network numbers for the WAN link. In this case, the following method is used to force the older implementation to become the link master. It should be noted that a router implementation capable of supporting workstation dial-in MUST be able to supply AT LEAST ONE network number on which the workstation can reside. If the router is prepared to assign an IPX network number to the link, it sends its primary network number in the Timer Request WNodeID field, and omits the Extended Node ID option. On the other hand, if the router is NOT prepared to assign an IPX network number to the link, it sets the Timer Request WNodeID field to zero, and includes its primary network number in an Extended Node ID option. Workstations follow a similar, but slightly different set of rules for setting the WNodeID field. If this is the first time the work- station is connecting to the router, the workstation will set the WNodeID to zero indicating the router should be the link master and allocate a network number for the new link. In this case, the work- station will respond to the router's Timer Request and acknowledge only the Workstation Routing Type option. Note that a workstation does NOT include an Extended Node ID option in it's timer request. If the workstation is reconnecting a link after an earlier inactivity disconnect, it is necessary for the workstation to be able to specify
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -