📄 rfc2721.txt
字号:
Network Working Group N. BrownleeRequest for Comments: 2721 The University of AucklandCategory: Informational October 1999 RTFM: Applicability StatementStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.Abstract This document provides an overview covering all aspects of Realtime Traffic Flow Measurement, including its area of applicability and its limitations.Table of Contents 1 The RTFM Documents . . . . . . . . . . . . . . . . . . . . . . 2 2 Brief Technical Specification (TS) . . . . . . . . . . . . . . 3 3 Applicability Statement (AS) . . . . . . . . . . . . . . . . . 3 4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 Security Considerations . . . . . . . . . . . . . . . . . . . 5 6 Policy Considerations . . . . . . . . . . . . . . . . . . . . 6 7 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 Appendix A: WG Report on the Meter MIB . . . . . . . . . . . . 8 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 Author's Address . . . . . . . . . . . . . . . . . . . . . . . 9 11 Full Copyright Statement . . . . . . . . . . . . . . . . . . . 10Brownlee Informational [Page 1]RFC 2721 RTFM: Applicability Statement October 19991 The RTFM Documents The RTFM Traffic Measurement System has been developed by the Realtime Traffic Flow Measurement Working Group. It is described in six other documents, as follows: [ACT-BKG] Internet Accounting: Background (Informational) Sets out the requirements for a usage reporting system for network traffic. Sketches out the RTFM Architecture (meters, meter readers and managers) allowing for multiple meters and meter readers, with asynchronous reading from the meters. Proposes methods of classifying traffic flows, the need for flows to be bi-directional (with separate sets of counters for each direction) and the need for each packet to be counted in a single flow (the ' count in one bucket' principle). [RTFM-ARC] RTFM Architecture (Informational) Defines the RTFM Architecture, giving descriptions of each component. Explains how traffic flows are viewed as logical entities described in terms of their address-attribute values, so that each is defined by the attributes of its end-points. Gives a detailed description of the RTFM traffic meter, with full details of how flows are stored in the meter's flow table, and how packets are matched in accordance with rules stored in a ruleset. [RTFM-MIB] RTFM Meter MIB (Proposed Standard) Describes the SNMP Management Information Base for an RTFM meter, including its flow table, rule table (storing the meter's rulesets) and the control tables used for managing a meter and reading flow data from it. [RTFM-SRL] SRL: A Language for Describing Traffic (Informational) Flows and Specifying Actions for Flow Groups An RTFM ruleset is an array of rules, used by the meter to decide which flows are of interest, which end-point is the flow source, and how much detail (i.e. what attribute values) must be saved for each flow. SRL is a high-level language providing a clear, logical way to write rulesets. It should also be useful for other applications which select flows and perform actions upon them, e.g. packet-marking gateways, RSVP policy agents, etc.Brownlee Informational [Page 2]RFC 2721 RTFM: Applicability Statement October 1999 [RTFM-NEW] RTFM New Attributes (Experimental) There has been considerable interest from users in extending the RTFM Architecture so as to allow a meter to report on an increased number of flow-related measures. This RFC documents work on specifying such measures (the 'new' attributes) and reports on experience of implementing them. [RTFM-NTM] RTFM: Experiences with NeTraMet (Informational) NeTraMet is a free software implementation of the RTFM Architecture which has been available since 1993. This RFC records RTFM implementation experience gained with NeTraMet up to late 1996. One particularly important result is the realisation that groups of rules which test the same attribute using the same mask can be implemented as a single hashed comparison, allowing the meter to rapidly determine whether a packet belongs to one of a large number of networks.2 Brief Technical Specification (TS) RTFM provides for the measurement of network traffic 'flows', i.e. - a method of specifying traffic flows within a network - a hierarchy of devices (meters, meter readers, managers) for measuring the specified flows - a mechanism for configuring meters and meter readers, and for collecting the flow data from remote meters RTFM provides high time resolution for flow first- and last-packet times. Counters for long-duration flows may be read at intervals determined by a manager. The RTFM Meter is designed so as to do as much data reduction work as possible, which minimizes the amount of data to be read and the amount of processing needed to produce useful reports from it. RTFM flow data can be used for a wide range of purposes, such as usage accounting, long-term recording of network usage (classified by IP address attributes) and real-time analysis of traffic flows at remote metering points.3 Applicability Statement (AS) To use RTFM for collecting network traffic information one must first consider where in the network traffic flows are to be measured. Once that is decided, an RTFM Meter must be installed at each chosen measurement point.Brownlee Informational [Page 3]RFC 2721 RTFM: Applicability Statement October 1999 At least one Meter Reader is needed to collect the measured data from the meters, and a single Manager is needed to control the meters and meter readers. RTFM Meters may be single- or multi-user hosts running a meter program (one such program is available as free software, a second is under development at IBM Research). Alternatively, meters could be run as firmware in switches or routers. A hybrid approach in which an RTFM meter takes raw traffic data from a router provides another useful implementation path. RTFM Managers are programs running on a host, communicating with meters and meter readers via the network. For this purpose meters are SNMP agents implementing the RTFM Meter MIB, and managers are SNMP clients using the Meter MIB to store and access the flow data.4 Limitations RTFM is designed to measure traffic flows for traffic passing a point in a network. If packets for a flow pass the metering point in both directions the meter will match them up, providing counters for each direction. If packets only pass in one direction the meter can only provide counts for that direction. Users of RTFM should note that installing meters, meter readers and managers merely provides one with the capability to collect flow data. Further installation work will be needed to develop configuration files (RTFM rulesets) for each meter, data processing applications to analyse the flow data, and various scripts, cron jobs, etc. so as to create a useful production-quality measurement system which suits a user's particular needs. One of the strengths of RTFM is its ability to collect flow data at whatever level of detail (or 'granularity') is required. It can be tempting to simply collect 'all possible data', but there are severe resource constraints. If one tries to save the complete address- attribute value for all attributes of every possible flow a very large amount of data may be produced rapidly, but the meter has only a finite amount of memory for its flow table. A better approach is to save the minimum amount of data required to achieve the measurement system goals. For example, to collect usage data so as to bill subscribers identified by their IP address one could just save the full IP address, nothing more. The RTFM meter would produce flow data for each subscriber IP address, with PDU and Octet counts for data sent and received, which would be the minimum needed to produce bills. In practice one would probably want to save at least part of theBrownlee Informational [Page 4]RFC 2721 RTFM: Applicability Statement October 1999 Destination IP address, which would allow the production of usage logs showing subscriber activity over time. The simplest way to determine how much detail can be collected is to create an initial ruleset which collects the minimum amount, then to modify it step by step, gradually increasing the amount of information saved for each flow. An RTFM meter ought to provide some measures of its own performance (e.g. number of active flows, percentage idle processor time, packets metered, packets not metered). Such measures will be implementation-specific, but should allow a user to assess the impact of each change to the ruleset. If the network data rate is too high, i.e. the meter reports that it cannot meter all the packets even with the initial ruleset above, one may be able to use other strategies. For example one could - run the meter on a faster computer, e.g. move from a DOS PC to a workstation, or perhaps use a meter implemented in firmware within a switch or router. - use sampling. The details of such sampling are not defined within the RTFM Architecture, but the Meter MIB provides one simple method by allowing one to specify that only every nth packet on an interface will be metered. This would probably not be acceptable for producing billing data, but might well be acceptable for traffic engineering purposes.5 Security Considerations These are discussed in detail in the Architecture and Meter MIB documents. In brief, an RTFM Meter is an SNMP agent which observes a network and collects flow data from it. Since it doesn't control the network directly, it has no direct effect on network security. On the other hand, the flow data itself may well be valuable - to the network operator (as billing data) or to an attacker (who may wish to modify that data, or the meter's ruleset(s)). It is therefore important to take proper precautions to ensure that access to the meter and its data is sufficiently secure. For example, a meter port attached to a network should be passive, so that it cannot respond to login attempts of any kind. Control and data connections to a meter should be via a secure management network. Finally, suitable security should be established for the meter, as it would be for any other SNMP agent.Brownlee Informational [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -