📄 rfc2564.txt
字号:
- the tables providing a service-level view, including: - the service name to service instance table - the service instance to service name table - the service instance to running application element table - the running application element to service instance table - the tables providing information on I/O channels, including: - the table of open channels - the table of open files - the open connections table - the transaction statistics tables - historical information on I/O channels - the running application element status and control group - the running application element status table - the running application element control table In order to support SNMPv1, SNMPv2, and SNMPv3 environments, in cases where counter objects may potentially advance very rapidly, where sixty-four bit counters have been used thirty-two bit counters reporting the low-order thirty-two bits of the value have also been defined. Since rows in most of these tables will come and go with the running application elements whose information is contained in them, sysUpTime.0 is not appropriate as a discontinuity indicator for counters in these tables. By defining separate discontinuity indicators for the rows in these tables, entries can come and go as needed without causing other objects to appear to have discontinuities. As required by [15], the discontinuity indicators for the various information objects in these tables are identified inKalbfleisch, et al. Standards Track [Page 7]RFC 2564 Application Management MIB May 1999 the relevant DESCRIPTION clauses. Note that a discontinuity in one of these counters does not imply a sysUpTime.0 discontinuity, nor does a sysUpTime.0 discontinuity imply a discontinuity in any of these counters.4.1. The service-level tables The service-level tables permit the identification of one or more instances of named services on a system, and the association of running application elements to these services. Service names are represented as human-readable strings, using values assigned by IANA where possible. The allocation of unique values for service instance identifiers is a local administrative issue; the values allocated must be constant for the lifetime of the service instance, and re-use of values should be avoided. It is important to understand that a service is not the same thing as a protocol. Rather, some services may be at least partially described by the protocol(s) used to provide that service. In deciding what should or should not be considered a service, the following factors merit consideration: - is there an identifiable set of resources associated with providing this service? - is there a reasonably long-lived server or client process? Following this reasoning, one can see where SMTP and HTTP service providers would be good candidates for classification as services for purposes of application management, where finger probably would not. Of course, implementors of this MIB are free to define additional services. An applicability statement may be an appropriate vehicle for standardizing how a specific service's information is reported using this MIB.4.1.1. The service name to service instance table The service name to service instance table uses the service name as its primary key, and the service instance identifier as its secondary key. It facilitates the identification and lookup of the instances of a given service in a system.Kalbfleisch, et al. Standards Track [Page 8]RFC 2564 Application Management MIB May 19994.1.2. The service instance to service name table The service instance to service name table uses the service instance identifier as its primary key, and the service name as its secondary key. Given a service instance identifier, it facilitates the lookup of the name of the service being provided.4.1.3. The service instance to running application element table The service instance to running application element table uses the service instance identifier as its primary key, and the running application element index as its secondary key. This facilitates the identification of the set of running application elements providing a given instance of a service.4.1.4. The running application element to service instance table The running application element to service instance table uses the running application element index as its primary key and the service instance identifier as its secondary key. It identifies the set of services provided by a given running application element.4.2. The I/O channel group Information processed by an application can be modeled using the concept of a channel. Two kinds of channels, for example, are files and network connections. +-------+ | File | +---------+ /+-------+ +-------------+ | Generic | / | transaction |----| I/O |-------< | stream | | Channel | \ +------------+ +-------------+ +---------+ \ | open or | \| listening | | connection | +------------+ For each entry in the open channel table, there will be a corresponding entry in either the open file table or the open connection table. The information flowing on a channel may be structured as transactions. When the information flow on a channel is being monitored as a transaction stream, an entry in the transaction stream table will represent this fact and the associated information aboutKalbfleisch, et al. Standards Track [Page 9]RFC 2564 Application Management MIB May 1999 that stream. To facilitate traversal of these tables and retrieval of information relevant to a specific running application element or service instances, the initial indexes of these tables are the same. In each case, the first index determines whether the second index is interpreted as a running application element identifier or as a service instance identifier. The third index serves to uniquely identify a channel (and consequently, an open connection or file) in the context of a running application element or service instance. The transaction stream summary table contains per-stream summaries of transaction statistics. The transaction flow statistics table contains statistics broken into both transmit and receive counts for requests and responses on each stream. The transaction kind statistics table contains information further broken down by transaction kind. The transaction tables have a common structure for their indexing, with additional indexes added for increasing detail. The initial three indexes are the same as all the other tables in this group, serving to uniquely identify each transaction stream.4.2.1. The open channels table The following information is available in this table: - time at which the channel was opened - number of read requests - number of bytes read - time at which most recent read operation was initiated - number of write requests - number of bytes written - time at which most recent write operation was initiated4.2.2. The open files table The open files table contains one entry for each file in use by a manageable running application element. (See "Definitions of System-Level Managed Objects for Applications" [31] for a detailed definition of a running application element.) The purpose of this table is to identify the files in use and to record informationKalbfleisch, et al. Standards Track [Page 10]RFC 2564 Application Management MIB May 1999 peculiar to files not already covered in the open channel table. If multiple running application elements open the same file, there will be an entry for each running application element opening that file. Similarly, if a running application element opens a file multiple times, there will be an entry in this table for the file corresponding to each open. The task of combining the information for file activity from this table (organized by running application element) into per-application statistics can be accomplished by a manager using the System Application MIB's [31] sysApplInstallPkgTable to find the installed application, the sysApplRunTable to find the running instances of that application, and the sysApplElmtRunTable to find the relevant values of sysApplElmtRunIndex. The manager, armed with a set of values for sysApplElmtRunIndex, is now able to retrieve the relevant portions of the applOpenFileTable and other tables in this MIB. The following information is available in this table: - file name - file size - current mode (read/write) of this file By convention, the names "stdin", "stdout" and "stderr" are used when these streams cannot be resolved to actual file names.4.2.3. The open connections table This table provides information on channels that are open connections or listeners. The following information is available for each connection: - identification of the transport protocol in use - near-end address and port - far-end address and port - identification of the application layer protocol in useKalbfleisch, et al. Standards Track [Page 11]RFC 2564 Application Management MIB May 19994.2.4. The transaction stream summary table The transaction stream summary table contains per-stream summaries of transaction statistics. The simple model of a transaction used here looks like this: invoker | Request | performer | - - - - - - > | | | | Response | | < - - - - - - | | | Since in some protocols it is possible for an entity to take on both the invoker and performer roles, information here is accumulated for transmitted and received requests, as well as for transmitted and received responses. Counts are maintained for both transactions and bytes transferred. The information represented in this table includes: - identification of the underlying connection or file used for this transaction stream - a human-readable description of this stream - a human-readable description of this stream's notion of what a unit of work is - the cumulative amount of time spent (as an operation invoker) waiting for responses (from queueing of request to arrival of first response) - the cumulative amount of time spent (as an operation invoker) receiving responses (time from the arrival of the first response to the arrival of the last response in a series of responses to a particular request) - the cumulative amount of time spent (as an operation performer) handling requests (time from receipt of request to queueing of first outgoing response) - the cumulative amount of time spent (as an operation performer) sending responses (time from queuing of first response to the last response in a series of responses to a particular request)Kalbfleisch, et al. Standards Track [Page 12]RFC 2564 Application Management MIB May 1999 - the cumulative number of transactions initiated (as an invoker) - the cumulative number of transactions processed (as a performer)4.2.5. The transaction flow statistics table The transaction flow statistics table contains statistics broken into both transmit and receive counts for requests and responses on each stream. In addition to the service instance / running application element and transaction stream identifier indexes, rows in this table are indexed by flow direction (transmit or receive) and role
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -