📄 rfc1560.txt
字号:
Network Working Group B. LeinerRequest for Comments: 1560 USRACategory: Informational Y. Rekhter IBM December 1993 The MultiProtocol InternetStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract This document was prepared by the authors on behalf of the Internet Architecture Board (IAB). It is offered by the IAB to stimulate discussion. There has recently been considerable discussion on two topics: MultiProtocol approaches in the Internet and the selection of a next generation Internet Protocol. This document suggests a strawman position for goals and approaches for the IETF/IESG/IAB in these areas. It takes the view that these two topics are related, and proposes directions for the IETF/IESG/IAB to pursue. In particular, it recommends that the IETF/IESG/IAB should continue to be a force for consensus on a single protocol suite and internet layer protocol. The IETF/IESG/IAB should: - maintain its focus on the TCP/IP protocol suite, - work to select a single next-generation internet protocol and develop mechanisms to aid in transition from the current IPv4, and - continue to explore mechanisms to interoperate and share resources with other protocol suites within the Internet.1. Introduction The major purpose of the Internet is to enable ubiquitous communication services between endpoints. In a very real way, the Internet IS inter-enterprise networking. Therefore, the issue of multiprotocol Internet is not just the issue of multiple network layers, but the issue of multiple comparable services implementedInternet Architecture Board [Page 1]RFC 1560 The MultiProtocol Internet December 1993 over different protocols. The issue of multiprotocol Internet is multidimensional and should be analyzed with respect to two simultaneous principles: - It is desirable to have a single protocol stack. The community should try to avoid unconstrained proliferation of various protocol stacks. - In reality there will always be more than one protocol stack. Presence of multiple network layers is just one of the corollaries of this observation, as even within a single protocol stack, forces of evolution of that stack will lead to periods of multiple protocols. We need to develop mechanisms that maximize the services that can be provided across all the protocol stacks (multiprotocol Internet).2. Background and Context2.1. The MultiProtocol Evolutionary Process In an IAB architectural retreat held in 1991 [Cla91], a dynamic view of the process of multiprotocol integration and accommodation was described, based on the figure below. --------------- -------------- ! ! ! ! ! ! ! Interop- ! ! Primary ! >>>>>>>>>>> ! erability !>>>>> ! Protocol ! ! ! v ! Suite ! -------------- v ! ! v ! ! v ! ! -------------- v ! ! ! ! v ! ! >>>>>>>>>>> ! Resource ! v ! ! ! Sharing !>>>>v ! ! ! ! v --------------- -------------- v ^ v ^ -------------- v ^ ! ! v <<<<<<<! Harmonize !<<<<<<<<<<<<<<<<<<<< ! ! ! ! -------------- Figure 1: MultiProtocol Evolution ProcessInternet Architecture Board [Page 2]RFC 1560 The MultiProtocol Internet December 1993 The figure describes the process from the perspective of a community working on a single primary protocol suite (such as the IETF/IESG/IAB working on the TCP/IP protocol suite.) (Note: It must be kept in mind throughout this paper that, while the discussion is oriented from the perspective of the IETF/IESG/IAB and the TCP/IP protocol suite, there is a complementary viewpoint from the perspective of each of the communities whose primary focus is on one of the other protocol suites.) There are other protocol suites (for example, IPX, OSI, SNA). Although the primary emphasis of the community is developing a system based on a single set of protocols (protocol suite), the existence of other protocol suites demands that the community deal with two aspects of multiprotocolism. The first is interoperability between the primary protocol suite and other protocol suites. The second is resource sharing between the primary protocol suite and other protocol suites. Both interoperability and sharing may happen at multiple levels in the protocol suites. Achieving interoperability and resource sharing is difficult, and often unanticipated interactions occur. Interoperability can be difficult for reasons such as lack of common semantics. Resource sharing can run into problems due to lack of common operational paradigms. For example, sharing bandwidth on a link may not work effectively if one protocol suite backs off in its demands and the other does not. Interoperability and resource sharing both require cooperation between the developers/users of the different protocol suites. The challenge in this area, then, is to develop mechanisms for interoperability and resource sharing that have minimal negative affect on the primary protocol suite. The very attempts to achieve interoperability and resource sharing therefore lead to an attempt to bring the multiple protocol suites into some level of harmonization, even if it is just to simplify the problems of interoperability and sharing. Furthermore, the communications between the communities also leads to a level of harmonization. These processes, together with the normal process of evolution, lead to changes in the primary protocol suite, as well as the other suites. Thus, the need for new technologies and the need to accommodate multiple protocols leads to a natural process of diversion. The process of harmonization leads to conversion. While this discussion was oriented around the relation between multiple protocol suites, it can also be applied somewhat to the process of evolution within the primary protocol suite. So, for example, as new technologies develop, multiple approaches for exploiting those technologies will also develop. The process then hopefully leads to a process of harmonization of those differentInternet Architecture Board [Page 3]RFC 1560 The MultiProtocol Internet December 1993 approaches.2.2. The Basis of the Internet The rapid growth of the Internet has resulted from several forces. Some of them are "practical", such as the bundling of TCP/IP with Berkeley Unix and the early decision to base NSFNet on TCP/IP. However, we believe that there is a more fundamental reason for this growth. The Internet (and the TCP/IP protocol suite) were targeted at Inter-Enterprise Networking. Although the availability of TCP/IP on workstations and the desire to have a single environment serve both intra- and inter-enterprise networking led to the use of TCP/IP within organizations, the major contribution of the Internet and TCP/IP was to provide to user communities the ability to communicate with other organizations/communities in a straightforward manner using a set of common and basic services. Fundamental to this ability was the fact that the Internet was based on a single, common, virtual network service (IP) with a supporting administrative infrastructure. This allowed a ubiquitous underlying communication infrastructure to develop serving the global community, upon which a set of services could be provided to the user communities. This also allowed for a large market to develop for application services that were built upon the underlying
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -