📄 rfc1772.txt
字号:
form of configuration information. BGP enforces policies by affecting the selection of paths from multiple alternatives and by controlling the redistribution of routing information. Policies are determined by the AS administration. Routing policies are related to political, security, or economic considerations. For example, if an AS is unwilling to carry traffic to another AS, it can enforce a policy prohibiting this. The following are examples of routing policies that can be enforced with the use of BGP: 1. A multihomed AS can refuse to act as a transit AS for other AS's. (It does so by only advertising routes to destinations internal to the AS.) 2. A multihomed AS can become a transit AS for a restricted set of adjacent AS's, i.e., some, but not all, AS's can use the multihomed AS as a transit AS. (It does so by advertising its routing information to this set of AS's.) 3. An AS can favor or disfavor the use of certain AS's for carrying transit traffic from itself. A number of performance-related criteria can be controlled with the use of BGP: 1. An AS can minimize the number of transit AS's. (Shorter AS paths can be preferred over longer ones.) 2. The quality of transit AS's. If an AS determines that two or more AS paths can be used to reach a given destination, that AS can use a variety of means to decide which of the candidate ASRekhter & Gross [Page 7]RFC 1772 BGP-4 Application March 1995 paths it will use. The quality of an AS can be measured by such things as diameter, link speed, capacity, tendency to become congested, and quality of operation. Information about these qualities might be determined by means other than BGP. 3. Preference of internal routes over external routes. For consistency within an AS, equal cost paths, resulting from combinations of policies and/or normal route selection procedures, must be resolved in a consistent fashion. Fundamental to BGP is the rule that an AS advertises to its neighboring AS's only those routes that it uses. This rule reflects the "hop-by-hop" routing paradigm generally used by the current Internet.6. Path Selection with BGP One of the major tasks of a BGP speaker is to evaluate different paths from itself to a set of destination covered by an address prefix, select the best one, apply appropriate policy constraints, and then advertise it to all of its BGP neighbors. The key issue is how different paths are evaluated and compared. In traditional distance vector protocols (e.g., RIP) there is only one metric (e.g., hop count) associated with a path. As such, comparison of different paths is reduced to simply comparing two numbers. A complication in Inter-AS routing arises from the lack of a universally agreed-upon metric among AS's that can be used to evaluate external paths. Rather, each AS may have its own set of criteria for path evaluation. A BGP speaker builds a routing database consisting of the set of all feasible paths and the list of destinations (expressed as address prefixes) reachable through each path. For purposes of precise discussion, it's useful to consider the set of feasible paths for a set of destinations associated with a given address prefix. In most cases, we would expect to find only one feasible path. However, when this is not the case, all feasible paths should be maintained, and their maintenance speeds adaptation to the loss of the primary path. Only the primary path at any given time will ever be advertised. The path selection process can be formalized by defining a complete order over the set of all feasible paths to a set of destinations associated with a given address prefix. One way to define this complete order is to define a function that maps each full AS path to a non-negative integer that denotes the path's degree of preference. Path selection is then reduced to applying this function to all feasible paths and choosing the one with the highest degree of preference.Rekhter & Gross [Page 8]RFC 1772 BGP-4 Application March 1995 In actual BGP implementations, the criteria for assigning degree of preferences to a path are specified as configuration information. The process of assigning a degree of preference to a path can be based on several sources of information: 1. Information explicitly present in the full AS path. 2. A combination of information that can be derived from the full AS path and information outside the scope of BGP (e.g., policy routing constraints provided as configuration information). Possible criteria for assigning a degree of preference to a path are: - AS count. Paths with a smaller AS count are generally better. - Policy considerations. BGP supports policy-based routing based on the controlled distribution of routing information. A BGP speaker may be aware of some policy constraints (both within and outside of its own AS) and do appropriate path selection. Paths that do not comply with policy requirements are not considered further. - Presence or absence of a certain AS or AS's in the path. By means of information outside the scope of BGP, an AS may know some performance characteristics (e.g., bandwidth, MTU, intra- AS diameter) of certain AS's and may try to avoid or prefer them. - Path origin. A path learned entirely from BGP (i.e., whose endpoint is internal to the last AS on the path) is generally better than one for which part of the path was learned via EGP or some other means. - AS path subsets. An AS path that is a subset of a longer AS path to the same destination should be preferred over the longer path. Any problem in the shorter path (such as an outage) will also be a problem in the longer path. - Link dynamics. Stable paths should be preferred over unstable ones. Note that this criterion must be used in a very careful way to avoid causing unnecessary route fluctuation. Generally, any criteria that depend on dynamic information might cause routing instability and should be treated very carefully.Rekhter & Gross [Page 9]RFC 1772 BGP-4 Application March 19957. Required set of supported routing policiesPolicies are provided to BGP in the form of configurationinformation. This information is not directly encoded in theprotocol. Therefore, BGP can provide support for very complex routingpolicies. However, it is not required that all BGP implementationssupport such policies.We are not attempting to standardize the routing policies that mustbe supported in every BGP implementation; we strongly encourage allimplementors to support the following set of routing policies: 1. BGP implementations should allow an AS to control announcements of BGP-learned routes to adjacent AS's. Implementations should also support such control with at least the granularity of a single address prefix. Implementations should also support such control with the granularity of an autonomous system, where the autonomous system may be either the autonomous system that originated the route, or the autonomous system that advertised the route to the local system (adjacent autonomous system). Care must be taken when a BGP speaker selects a new route that can't be announced to a particular external peer, while the previously selected route was announced to that peer. Specifically, the local system must explicitly indicate to the peer that the previous route is now infeasible. 2. BGP implementations should allow an AS to prefer a particular path to a destination (when more than one path is available). At the minimum an implementation shall support this functionality by allowing to administratively assign a degree of preference to a route based solely on the IP address of the neighbor the route is received from. The allowed range of the assigned degree of preference shall be between 0 and 2^(31) - 1. 3. BGP implementations should allow an AS to ignore routes with certain AS's in the AS_PATH path attribute. Such function can be implemented by using the technique outlined in [2], and by assigning "infinity" as "weights" for such AS's. The route selection process must ignore routes that have "weight" equal to "infinity".8. Interaction with other exterior routing protocols The guidelines suggested in this section are consistent with the guidelines presented in [3].Rekhter & Gross [Page 10]RFC 1772 BGP-4 Application March 1995 An AS should advertise a minimal aggregate for its internal destinations with respect to the amount of address space that it is actually using. This can be used by administrators of non-BGP 4 AS's to determine how many routes to explode from a single aggregate. A route that carries the ATOMIC_AGGREGATE path attribute shall not be exported into either BGP-3 or EGP2, unless such an exportation can be accomplished without exploding the NLRI of the route.8.1 Exchanging information with EGP2 This document suggests the following guidelines for exchanging routing information between BGP-4 and EGP2. To provide for graceful migration, a BGP speaker may participate in EGP2, as well as in BGP-4. Thus, a BGP speaker may receive IP reachability information by means of EGP2 as well as by means of BGP-4. The information received by EGP2 can be injected into BGP-4 with the ORIGIN path attribute set to 1. Likewise, the information received via BGP-4 can be injected into EGP2 as well. In the latter case, however, one needs to be aware of the potential information explosion when a given IP prefix received from BGP-4 denotes a set of consecutive A/B/C class networks. Injection of BGP-4 received NLRI that denotes IP subnets requires the BGP speaker to inject the corresponding network into EGP2. The local system shall provide mechanisms to control the exchange of reachability information between EGP2 and BGP-4. Specifically, a conformant implementation is required to support all of the following options when injecting BGP-4 received reachability information into EGP2: - inject default only (0.0.0.0); no export of any other NLRI - allow controlled deaggregation, but only of specific routes; allow export of non-aggregated NLRI - allow export of only non-aggregated NLRI The exchange of routing information via EGP2 between a BGP speaker participating in BGP-4 and a pure EGP2 speaker may occur only at the domain (autonomous system) boundaries.8.2 Exchanging information with BGP-3 This document suggests the following guidelines for exchanging routing information between BGP-4 and BGP-3. To provide for graceful migration, a BGP speaker may participate in BGP-3, as well as in BGP-4. Thus, a BGP speaker may receive IPRekhter & Gross [Page 11]RFC 1772 BGP-4 Application March 1995 reachability information by means of BGP-3, as well as by means of BGP-4. A BGP speaker may inject the information received by BGP-4 into BGP-3 as follows. If an AS_PATH attribute of a BGP-4 route carries AS_SET path segments, then the AS_PATH attribute of the BGP-3 route shall be constructed by treating the AS_SET segments as AS_SEQUENCE segments, with the resulting AS_PATH being a single AS_SEQUENCE. While this procedure loses set/sequence information, it doesn't affect protection for routing loops suppression, but may affect policies, if the policies are based on the content or ordering of the AS_PATH attribute. While injecting BGP-4 derived NLRI into BGP-3, one needs to be aware of the potential information explosion when a given IP prefix denotes a set of consecutive A/B/C class networks. Injection of BGP-4 derived NLRI that denotes IP subnets requires the BGP speaker to inject the corresponding network into BGP-3. The local system shall provide mechanisms to control the exchange of routing information between BGP-3 and BGP-4. Specifically, a conformant implementation is required to support all of the following options when injecting BGP-4 received routing information into BGP-3: - inject default only (0.0.0.0), no export of any other NLRI - allow controlled deaggregation, but only of specific routes; allow export of non-aggregated NLRI - allow export of only non-aggregated NLRI The exchange of routing information via BGP-3 between a BGP speaker participating in BGP-4 and a pure BGP-3 speaker may occur only at the autonomous system boundaries. Within a single autonomous system BGP conversations between all the BGP speakers of that autonomous system have to be either BGP-3 or BGP-4, but not a mixture.9. Operations over Switched Virtual Circuits When using BGP over Switched Virtual Circuit (SVC) subnetworks it may be desirable to minimize traffic generated by BGP. Specifically, it may be desirable to eliminate traffic associated with periodic KEEPALIVE messages. BGP includes a mechanism for operation over switched virtual circuit (SVC) services which avoids keeping SVCs permanently open and allows it to eliminates periodic sending of KEEPALIVE messages.Rekhter & Gross [Page 12]RFC 1772 BGP-4 Application March 1995 This section describes how to operate without periodic KEEPALIVE messages to minimise SVC usage when using an intelligent SVC circuit manager. The proposed scheme may also be used on "permanent" circuits, which support a feature like link quality monitoring or echo request to determine the status of link connectivity. The mechanism described in this section is suitable only between the BGP speakers that are directly connected over a common virtual circuit.9.1 Establishing a BGP Connection The feature is selected by specifying zero Hold Time in the OPEN message.9.2 Circuit Manager Properties The circuit manager must have sufficient functionality to be able to compensate for the lack of periodic KEEPALIVE messages: - It must be able to determine link layer unreachability in a predictable finite period of a failure occurring. - On determining unreachability it should: - start a configurable dead timer (comparable to a typical Hold timer value). - attempt to re-establish the Link Layer connection. - If the dead timer expires it should: - send an internal circuit DEAD indication to TCP.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -