📄 rfc2353.txt
字号:
o RTP -- 1 per RTP connection o UDP -- 1 per port o IP -- 1 per port Products are free to implement other structures. Products implementing other structures will need to make the appropriate modifications to the algorithms and protocol boundaries shown in this document.Dudley Informational [Page 6]RFC 2353 APPN/HPR in IP Networks May 1998 -------------------------------------------------------------------- -* *-------------* *-------* | |Configuration| | Path | | | Services | |Control| | *-------------* *-------* | A A A | | | | | | | V | | | *-----* | APPN/HPR | | | RTP | | | | *-----* | | | A | | | | | | | V | | | *-----* | | | | NCL | | | | *-----* | | *------------* A -* | | | V V V -* *---------* *---------* | | DLC |--->| LDLC | | | manager | | | | *---------* *---------* | | A | | IP DLC *-----------* | *----* | V | | | *---------* | | | LINK | | | | DEMUX | | | *---------* | | A *-* -* | | | V *---------* | UDP | *---------* A | V *---------* | IP | *---------* -------------------------------------------------------------------- Figure 1. HPR/IP Node StructureDudley Informational [Page 7]RFC 2353 APPN/HPR in IP Networks May 19982.3 Logical Link Control (LLC) Used for IP Logical Data Link Control (LDLC) is used by the native IP DLC. LDLC is defined in [2]. LDLC uses a subset of the services defined by IEEE 802.2 LLC type 2 (LLC2). LDLC uses only the TEST, XID, DISC, DM, and UI frames. LDLC was defined to be used in conjunction with HPR (with the HPR Control Flows over RTP option set 1402) over reliable links that do not require link-level error recovery. Most frame loss in IP networks (and the underlying frame networks) is due to congestion, not problems with the facilities. When LDLC is used on a link, no link-level error recovery is available; as a result, only RTP traffic is supported by the native IP DLC. Using LDLC eliminates the need for LLC2 and its associated cost (adapter storage, longer path length, etc.).2.3.1 LDLC Liveness LDLC liveness (using the LDLC TEST command and response) is required when the underlying subnetwork does not provide notification of connection outage. Because UDP is connectionless, it does not provide outage notification; as a result, LDLC liveness is required for HPR/IP links. Liveness should be sent periodically on active links except as described in the following subsection when the option to reduce liveness traffic is implemented. The default liveness timer period is 10 seconds. When the defaults for the liveness timer and retry timer (15 seconds) are used, the period between liveness tests is smaller than the time required to detect failure (retry count multiplied by retry timer period) and may be smaller than the time for liveness to complete successfully (on the order of round-trip delay). When liveness is implemented as specified in the LDLC finite-state machine (see [2]) this is not a problem because the liveness protocol works as follows: The liveness timer is for a single link. The timer is started when the link is first activated and each time a liveness test completes successfully. When the timer expires, a liveness test is performed. When the link is operational, the period between liveness tests is on the order of the liveness timer period plus the round-trip delay. For each implementation, it is necessary to check if the liveness protocol will work in a satisfactory manner with the default settings for the liveness and retry timers. If, for example, the liveness timer is restarted immediately upon expiration, then a different default for the liveness timer should be used.Dudley Informational [Page 8]RFC 2353 APPN/HPR in IP Networks May 19982.3.1.1 Option to Reduce Liveness Traffic In some environments, it is advantageous to reduce the amount of liveness traffic when the link is otherwise idle. (For example, this could allow underlying facilities to be temporarily deactivated when not needed.) As an option, implementations may choose not to send liveness when the link is idle (i.e., when data was neither sent nor received over the link while the liveness timer was running). (If the implementation is not aware of whether data has been received, liveness testing may be stopped while data is not being sent.) However, the RTP connections also have a liveness mechanism which will generate traffic. Some implementations of RTP will allow setting a large value for the ALIVE timer, thus reducing the amount of RTP liveness traffic. If LDLC liveness is turned off while the link is idle, one side of the link may detect a link failure much earlier than the other. This can cause the following problems: o If a node that is aware of a link failure attempts to reactivate the link, the partner node (unaware of the link failure) may reject the activation as an unsupported parallel link between the two ports. o If a node that is unaware of an earlier link failure sends data (including new session activations) on the link, it may be discarded by a node that detected the earlier failure and deactivated the link. As a result, session activations would fail. The mechanisms described below can be used to remedy these problems. These mechanisms are needed only in a node not sending liveness when the link is idle; thus, they would not be required of a node not implementing this option that just happened to be adjacent to a node implementing the option. o (Mandatory unless the node supports multiple active defined links between a pair of HPR/IP ports and supports multiple active dynamic links between a pair of HPR/IP ports.) Anytime a node rejects the activation of an HPR/IP link as an unsupported parallel link between a pair of HPR/IP ports (sense data X'10160045' or X'10160046'), it should perform liveness on any active link between the two ports that is using a different SAP pair. Thus, if the activation was not for a parallel link but rather was a reactivation because one of these active links had failed, the failed link will be detected. (If the SAP pair for the link being activated matches the SAP pair for an active link, a liveness test would succeed because the adjacent node wouldDudley Informational [Page 9]RFC 2353 APPN/HPR in IP Networks May 1998 respond for the link being activated.) A simple way to implement this function is for LDLC, upon receiving an activation XID, to run liveness on all active links with a matching IP address pair and a different SAP pair. o (Mandatory) Anytime a node receives an activation XID with an IP address pair and a SAP pair that match those of an active link, it should deactivate the active link and allow it to be reestablished. A timer is required to prevent stray XIDs from deactivating an active link. o (Recommended) A node should attempt to reactivate an HPR/IP link before acting on an LDLC-detected failure. This mechanism is helpful in preventing session activation failures in scenarios where the other side detected a link failure earlier, but the network has recovered.2.4 IP Port Activation The node operator (NO) creates a native IP DLC by issuing DEFINE_DLC(RQ) (containing customer-configured parameters) and START_DLC(RQ) commands to the node operator facility (NOF). NOF, in turn, passes DEFINE_DLC(RQ) and START_DLC(RQ) signals to configuration services (CS), and CS creates the DLC manager. Then, the node operator can define a port by issuing DEFINE_PORT(RQ) (also containing customer-configured parameters) to NOF with NOF passing the associated signal to CS. A node with adapters attached to multiple IP subnetworks may represent the multiple adapters as a single HPR/IP port. However, in that case, the node associates a single IP address with that port. RFC 1122 [9] requires that a node with multiple adapters be able to use the same source IP address on outgoing UDP packets regardless of the adapter used for transmission.Dudley Informational [Page 10]RFC 2353 APPN/HPR in IP Networks May 1998 *----------------------------------------------* | NOF CS DLC | *----------------------------------------------* . DEFINE_DLC(RQ) . 1 o----------------->o . DEFINE_DLC(RSP) | 2 o<-----------------* . START_DLC(RQ) . create 3 o----------------->o------------------->o . START_DLC(RSP) | . 4 o<-----------------* . . DEFINE_PORT(RQ) . . 5 o----------------->o . . DEFINE_PORT(RSP) | . 6 o<-----------------* . Figure 2. IP Port Activation The following parameters are received in DEFINE_PORT(RQ): o Port name o DLC name o Port type (if IP connection networks are supported, set to shared access transport facility [SATF]; otherwise, set to switched) o Link station role (set to negotiable) o Maximum receive BTU size (default is 1461 [1492 less an allowance for the IP, UDP, and LLC headers]) o Maximum send BTU size (default is 1461 [1492 less an allowance for the IP, UDP, and LLC headers])
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -