📄 rfc1143.txt
字号:
RFC 1143 Q Method February 1990 proven to work. Hence the above rule. A more restrictive solution would be to buffer all data and do absolutely nothing until the response comes back. There is no apparent reason for this, though some existing TELNET implementations do so anyway at the beginning of a connection, when most options are negotiated.5. How to reallow the request queue DISCUSSION: The above rule prevents queueing of more than one request through the network. However, it is possible to queue new requests within the TELNET implementation, so that "option typeahead" is effectively restored. An obvious possibility is to maintain a list of requests that have been made but not yet sent, so that when one negotiation finishes, the next can be started immediately. So while negotiating for a WILL, TELNET could buffer the user's requests for WONT, then WILL again, then WONT, then WILL, then WONT, as far as desired. This requires a dynamic and potentially unmanageable buffer. However, the restrictions upon possible requests guarantee that the list of requests must simply alternate between WONT and WILL. It is wasteful to enable an option and then disable it, just to enable it again; we might as well just enable it in the first place. The few possible exceptions to this rule do not outweigh the immense simplification afforded by remembering only the last few entries on the queue. To be more precise, during a WILL negotiation, the only sensible queues are WONT and WONT WILL, and similarly during a WONT negotiation. In the interest of simplicity, the Q method does not allow the WONT WILL possibility. We are now left with a queue consisting of either nothing or the opposite of the current negotiation. When we receive a reply to the negotiation, if the queue indicates that the option should be changed, we send the opposite request immediately and empty the queue. Note that this does not conflict with the RFC 854 rule about automatic regeneration of requests, as these new requests are simply the delayed effects of user or process commands. An implementation SHOULD support the queue, where support is defined by the rules following.Bernstein [Page 6]RFC 1143 Q Method February 1990 If it does support the queue, and if an option is currently under negotiation, it MUST NOT handle a new request from the user or process to switch the state of that option by sending a new request through the network. Instead, it MUST remember internally that the new request was made. If the user or process makes a second new request, for switching back again, while the original negotiation is still incomplete, the implementation SHOULD handle the request simply by forgetting the previous one. The third request SHOULD be treated like the first, etc. In any case, these further requests MUST NOT generate immediate requests through the network. When the option negotiation completes, if the implementation is remembering a request internally, and that request is for the opposite state to the result of the completed negotiation, then the implementation MUST act as if that request had been made after the completion of the negotiation. It SHOULD thus immediately generate a new request through the network. The implementation MAY provide a method by which support for the queue may be turned off and back on. In this case, it MUST default to having the support turned on. Furthermore, when support is turned off, if the implementation is remembering a new request for an outstanding negotiation, it SHOULD continue remembering and then deal with it at the close of the outstanding negotiation, as if support were still turned on through that point. DISCUSSION: It is intended (and it is the author's belief) that this queue system restores the full functionality of TELNET. Dave Borman has provided some informal analysis of this issue [1]; the most important possible problem of note is that certain options which may require buffering could be slowed by the queue. The author believes that network delays caused by buffering are independent of the implementation method used, and that the Q Method does not cause any problems; this is borne out by examples.6. Rule: Separate WANTNO and WANTYES Implementations SHOULD separate any states of negotiating WILL/DO from any states of negotiating WONT/DONT. DISCUSSION: It is possible to maintain a working TELNET implementation if the NO/YES/WANTNO/WANTYES states are simplified to NO/YES/WANT.Bernstein [Page 7]RFC 1143 Q Method February 1990 However, in a hostile environment this is a bad idea, as it means that handling a DO/WILL response to a WONT/DONT cannot be done correctly. It does not greatly simplify code; and the simplicity gained is lost in the extra complexity needed to maintain the queue.7. Example of Correct Implementation To ease the task of writing TELNET implementations, the author presents here a precise example of the response that a compliant TELNET implementation could give in each possible situation. All TELNET implementations compliant with this RFC SHOULD follow the procedures shown here. EXAMPLE STATE MACHINE FOR THE Q METHOD OF IMPLEMENTING TELNET OPTION NEGOTIATION There are two sides, we (us) and he (him). We keep four variables: us: state of option on our side (NO/WANTNO/WANTYES/YES) usq: a queue bit (EMPTY/OPPOSITE) if us is WANTNO or WANTYES him: state of option on his side himq: a queue bit if him is WANTNO or WANTYES An option is enabled if and only if its state is YES. Note that us/usq and him/himq could be combined into two six-choice states. "Error" below means that producing diagnostic information may be a good idea, though it isn't required. Upon receipt of WILL, we choose based upon him and himq: NO If we agree that he should enable, him=YES, send DO; otherwise, send DONT. YES Ignore. WANTNO EMPTY Error: DONT answered by WILL. him=NO. OPPOSITE Error: DONT answered by WILL. him=YES*, himq=EMPTY. WANTYES EMPTY him=YES. OPPOSITE him=WANTNO, himq=EMPTY, send DONT. * This behavior is debatable; DONT will never be answered by WILL over a reliable connection between TELNETs compliant with this RFC, so this was chosen (1) not to generate further messages, because if we know we're dealing with a noncompliant TELNET we shouldn't trust it to be sensible; (2) to empty the queue sensibly.Bernstein [Page 8]RFC 1143 Q Method February 1990 Upon receipt of WONT, we choose based upon him and himq: NO Ignore. YES him=NO, send DONT. WANTNO EMPTY him=NO. OPPOSITE him=WANTYES, himq=NONE, send DO. WANTYES EMPTY him=NO.* OPPOSITE him=NO, himq=NONE.** * Here is the only spot a length-two queue could be useful; after a WILL negotiation was refused, a queue of WONT WILL would mean to request the option again. This seems of too little utility and too much potential waste; there is little chance that the other side will change its mind immediately. ** Here we don't have to generate another request because we've been "refused into" the correct state anyway. If we decide to ask him to enable: NO him=WANTYES, send DO. YES Error: Already enabled. WANTNO EMPTY If we are queueing requests, himq=OPPOSITE; otherwise, Error: Cannot initiate new request in the middle of negotiation. OPPOSITE Error: Already queued an enable request. WANTYES EMPTY Error: Already negotiating for enable. OPPOSITE himq=EMPTY. If we decide to ask him to disable: NO Error: Already disabled. YES him=WANTNO, send DONT. WANTNO EMPTY Error: Already negotiating for disable. OPPOSITE himq=EMPTY. WANTYES EMPTY If we are queueing requests, himq=OPPOSITE; otherwise, Error: Cannot initiate new request in the middle of negotiation. OPPOSITE Error: Already queued a disable request. We handle the option on our side by the same procedures, with DO- WILL, DONT-WONT, him-us, himq-usq swapped.8. References [1] Borman, D., private communication, April 1989. [2] Borman, D., private communication, May 1989. [3] Borman, D., private communication, May 1989.Bernstein [Page 9]RFC 1143 Q Method February 1990 [4] Borman, D., Editor, "Telnet Linemode Option", RFC 1116, Cray Research, August 1989. [5] Borman, D., BSD Telnet Source, November 1989. [6] Braden, R., Editor, "Requirements for Internet Hosts -- Application and Support", RFC 1123, USC/Information Sciences Institute, October 1989. [7] Postel, J., and J. Reynolds, "Telnet Protocol Specification", RFC 854, USC/Information Sciences Institute, May 1983.9. Acknowledgments Thanks to Dave Borman, dab@opus.cray.com, for his helpful comments.Author's Address Daniel J. Bernstein 5 Brewster Lane Bellport, NY 11713 Phone: 516-286-1339 Email: brnstnd@acf10.nyu.eduBernstein [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -