📄 rfc2057.txt
字号:
Network Working Group S. BradnerRequest for Comments: 2057 Harvard UniversityCategory: Informational November 1996 Source Directed Access Control on the InternetStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.1. Abstract This memo was developed from a deposition that I submitted as part of a challenge to the Communications Decency Act of 1996, part of the Telecommunications Reform Act of 1996. The Telecommunications Reform Act is a U.S. federal law substantially changing the regulatory structure in the United States in the telecommunications arena. The Communications Decency Act (CDA) part of this law has as its aim the desire to protect minors from some of the material carried over telecommunications networks. In particular the law requires that the sender of potentially offensive material take "effective action" to ensure that it is not presented to minors. A number of people have requested that I publish the deposition as an informational RFC since some of the information in it may be useful where descriptions of the way the Internet and its applications work could help clear up confusion in the technical feasibility of proposed content control regulations.2. Control and oversight over the Internet No organization or entity operates or controls the Internet. The Internet consists of tens of thousands of local networks linking millions of computers, owned by governments, public institutions, non-profit organizations, and private companies around the world. These local networks are linked together by thousands of Internet service providers which interconnect at dozens of points throughout the world. None of these entities, however, controls the Internet; each entity only controls its own computers and computer networks, and the links allowed into those computers and computer networks. Although no organizations control the Internet, a limited number of organizations are responsible for the development of communications and operational standards and protocols used on the Internet. These standards and protocols are what allow the millions of different (and sometimes incompatible) computers worldwide to communicate with eachBradner Informational [Page 1]RFC 2057 Source Directed Access Control November 1996 other. These standards and protocols are not imposed on any computer or computer network, but any computer or computer network must follow at least some of the standards and protocols to be able to communicate with other computers over the Internet. The most significant of the organizations involved in defining these standards include the Internet Society (ISOC), the Internet Architecture Board (IAB), Internet Engineering Steering Group (IESG), and the Internet Engineering Task Force (IETF). The following summary outlines the relationship of these four organizations: The Internet Society (ISOC) is a professional society that is concerned with the growth and evolution of the worldwide Internet, with the way in which the Internet is and can be used, and with the social, political, and technical issues which arise as a result. The ISOC Trustees are responsible for approving appointments to the IAB from among the nominees submitted by the IETF nominating committee and ratifying the IETF Standards Process. The Internet Architecture Board (IAB) is a technical advisory group of the ISOC. It is chartered to provide oversight of the architecture of the Internet and its protocols, and to serve, in the context of the Internet standards process, as a body to which the decisions of the IESG may be appealed. The IAB is responsible for approving appointments to the IESG from among the nominees submitted by the IETF nominations committee and advising the IESG on the approval of Working Group charters. The Internet Engineering Steering Group (IESG) is responsible for technical management of IETF activities and the Internet standards process. As a part of the ISOC, it administers the process according to the rules and procedures which have been ratified by the ISOC Trustees. The IESG is directly responsible for the actions associated with entry into and movement along the Internet "standards track," including final approval of specifications as Internet Standards. The Internet Engineering Task Force (IETF) is a self-organized group of people who make technical and other contributions to the engineering and evolution of the Internet and its technologies. It is the principal body engaged in the development of new Internet standard specifications. The IETF is divided into eight functional areas. They are: Applications, Internet, IP: Next Generation, Network Management, Operational Requirements, Routing, Security, Transport and User Services. Each area has one or two area directors. These area directors, along with the IETF/IESG Chair, form the IESG.Bradner Informational [Page 2]RFC 2057 Source Directed Access Control November 1996 In addition to these organizations, there are a variety of other formal and informal groups that develop standards and agreements about specialized or emerging areas of the Internet. For example, the World Wide Web Consortium has developed agreements and standards for the Web. None of these organizations controls, governs, runs, or pays for the Internet. None of these organizations controls the substantive content available on the Internet. None of these organizations has the power or authority to require content providers to alter, screen, or restrict access to content on the Internet other than content that they themselves create. Beyond the standards setting process, the only Internet functions that are centralized are the allocation of numeric addresses to networks and the registration of "domain names." Three entities around the world share responsibility for ensuring that each network and computer on the Internet has a unique 32-bit numeric "IP" address (such as 123.32.22.132), and for ensuring that all "domain names" (such as "harvard.edu") are unique. InterNIC allocates IP addresses for the Americas, and has counterparts in Europe and Asia. InterNIC allocates large blocks of IP addresses to major Internet providers, who in turn allocate smaller blocks to smaller Internet providers (who in turn allocate even smaller blocks to other providers or end users). InterNIC does not, however, reliably receive information on who receives each numeric IP address, and thus cannot provide any central database of computer addresses. In addition, a growing number of computers access the Internet indirectly through address translating devices such as application "firewalls". With these devices the IP address used by a computer on the "inside" of the firewall is translated to another IP address for transmission over the Internet. The IP address used over the Internet can be dynamically assigned from a pool of available IP addresses at the time that a communication is initiated. In this case the IP addresses used inside the firewall is not required to be globally unique and the IP addresses used over the Internet do not uniquely identify a specific computer. Neither the InterNIC nor its counterparts in Europe and Asia control the substantive content available on the Internet, nor do they have the power or authority to require content providers to alter, screen, or restrict access to content on the Internet.Bradner Informational [Page 3]RFC 2057 Source Directed Access Control November 19963. Characteristics of Internet communications There are a wide variety of methods of communications over the Internet, including electronic mail, mail exploders such as listserv, USENET newsgroups, Internet Relay Chat, gopher, FTP, and the World Wide Web. With each of these forms of communication, the speaker has little or no way to control or verify who receives the communication. As detailed below, for each of these methods of communications, it is either impossible or very difficult for the speaker to restrict access to his or her communications "by requiring use of a verified credit card, debit account, adult access code, or adult personal identification number." Similarly, for each of these methods of communication, there are no feasible actions that I know of that the speaker can take that would be reasonably effective to "restrict or prevent access by minors" to the speaker's communications. With each of these methods of communications, it is either technologically impossible or practically infeasible for the speaker to ensure that the speech is not "available" to a minor. For most of these methods--mail exploders such as listserv, USENET newsgroups, Internet Relay Chat, gopher, FTP, and the World Wide Web--there are technological obstacles to a speaker knowing about or preventing access by minors to a communication. Yet even for the basic point- to-point communication of electronic mail, there are practical and informational obstacles to a speaker ensuring that minors do not have access to a communication that might be considered "indecent" or "patently offensive" in some communities.3.1 Point-to-Point Communications3.1.1 Electronic Mail. Of all of the primary methods of communication on the Internet, there is the highest likelihood that the sender of electronic mail will personally know the intended recipient (and know the intended recipient's true e-mail address), and thus the sender (i.e., the speaker or content provider) may be able to transmit potentially "indecent" or "patently offensive" content with relatively little concern that the speech might be "available" to minors. There is significantly greater risk for the e-mail speaker who does not know the intended recipient. As a hypothetical example, if an AIDS information organization receives from an unknown individual a request for information via electronic mail, the organization has no practical or effective way to verify the identity or age of the e- mail requester.Bradner Informational [Page 4]RFC 2057 Source Directed Access Control November 1996 An electronic mail address provides no authoritative information about the addressee. Addresses are often chosen by the addressees themselves, and may or may not be based on the addressees' real names. For millions of people with e-mail addresses, no additional information is available over the Internet. Where information is available (via, for example, inquiry tools such as "finger"), it is usually provided by the addressee, and thus may not be accurate (especially in a case of a minor seeking to obtain information the government has restricted to adults). There exists no universal or even extensive "white pages" listing of e-mail addresses and corresponding names or telephone numbers. Given the rapidly expanding and global nature of the Internet, any attempt as such a listing likely will be incomplete (and likely will not contain information about the age of the e-mail addressee). Nor is there any systematic, practical, and efficient method to obtain the identity of an e-mail address holder from the organization or institution operating the addressee's computer system. Moreover, it is relatively simple for someone to create an e-mail "alias" to send and receive mail under a different name. Thus, a given e-mail address may not even be the true e-mail address of the recipient. On some systems, for example, an individual seeking to protect his or her anonymity could easily create a temporary e-mail address for the sole purpose of requesting information from an AIDS information resource. In addition, there exist "anonymous remailers" which replace the original e-mail address on messages with a randomly chosen new one. The remailer keeps a record of the relationship between the original and the replacement name so that return mail will get forwarded to the right person. These remailers are used frequently for discussion or support groups on sensitive or controversial topics such as AIDS. Thus, there is no reasonably effective method by which one can obtain information from existing online information sources about an e-mail address sufficient to ensure that a given address is used by an adult and not a minor. Absent the ability to comply with the Communications Decency Act based on information from existing online information sources, an e- mail speaker's only recourse is to interrogate the intended e-mail recipient in an attempt to verify that the intended recipient is an adult. Such verification inherently and unavoidably imposes the burden of an entirely separate exchange of communications prior to sending the e-mail itself, and is likely to be unreliable if the recipient intends to deceive the speaker.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -