📄 rfc1347.txt
字号:
4 Running TCP and UDP Over CLNP TCP is run directly on top of CLNP (i.e., the TCP packet is encapsulated directly inside a CLNP packet - the TCP header occurs directly following the CLNP header). Use of TCP over CLNP is straightforward, with the only non-trivial issue being how to generate the TCP pseudo-header (for use in generating the TCP checksum). Note that TUBA runs TCP over CLNP on an end-to-end basis (for example, there is no intention to translate CLNP packets into IP packets). This implies that only "consenting updated systems" will be running TCP over CLNP; which in turn implies that, for purposes of generating the TCP pseudoheader from the CLNP header, backward compatibility with existing systems is not an issue. There are therefore several options available for how to generate the pseudoheader. The pseudoheader could be set to all zeros (implying that the TCP header checksum would only be covering the TCP header). Alternatively, the pseudoheader could be calculated from the CLNP header. For example, the "source address" in the TCP pseudoheader could be replaced with two bytes of zero plus a two byte checksum run on the source NSAP address length and address (and similarly for the destination address); the "protocol" could be replaced by the destination address selector value; and the "TCP Length" could be calculated from the CLNP Callon [Page 5] RFC 1347 TUBA: A Proposal for Addressing and Routing June 1992 packet in the same manner that it is currently calculated from the IP packet. The details of how the pseudoheader is composed is for further study. UDP is transmitted over CLNP in the same manner. In particular, the UDP packet is encapsulated directly inside a CLNP packet. Similarly, the same options are available for the UDP pseudo- header as for the TCP pseudoheader. 5 Updates to the Domain Name Service TUBA requires that a new DNS resource record entry type ("long-address") be defined, to store longer Internet (i.e., NSAP) addresses. This resource record allows mapping from DNS names to NSAP addresses, and will contain entries for systems which are able to run Internet applications, over TCP or UDP, over CLNP. The presence of a "long-address" resource record for mapping a particular DNS name to a particular NSAP address can be used to imply that the associated system is an updated Internet host. This specifically does not imply that the system is capable of running OSI protocols for any other purpose. Also, the NSAP address used for running Internet applications (over TCP or UDP over CLNP) does not need to have any relationship with other NSAP addresses which may be assigned to the same host. For example, a "dual stack" host may be able to run Internet applications over TCP over CLNP, and may also be able to run OSI applications over TP4 over CLNP. Such a host may have a single NSAP address assigned (which is used for both purposes), or may have separate NSAP addresses assigned for the two protocol stacks. The "long-address" resource record, if present, may be assumed to contain the correct NSAP address for running Internet applications over CLNP, but may not be assumed to contain the correct NSAP address for any other purpose. The backward translation (from NSAP address to DNS name) is facilitated by definition of an associated resource record. This resource record is known as "long-in-addr.arpa", and is used in a manner analogous to the existing "in-addr.arpa". Updated Internet hosts, when initiating communication with another host, need to know whether that host has been updated. The host will request the address-class "internet address", entry-type "long-address" from its local DNS server. If the local DNS server has not yet been updated, then the long address resource record will not be available, and an error response will be returned. In this case, the updated hosts must then ask for the regular Internet address. This allows updated hosts to be deployed in environments in which the DNS servers have not yet been updated. An updated DNS server, if asked for the long-address Callon [Page 6] RFC 1347 TUBA: A Proposal for Addressing and Routing June 1992 corresponding to a particular DNS name, does a normal DNS search to obtain the information. If the long-address corresponding to that name is not available, then the updated DNS server will return the resource record type containing the normal 32-bit IP address (if available). This allows more efficient operation between updated hosts and old hosts in an environment in which the DNS servers have been updated. Interactions between DNS servers can be done over either IP or CLNP, in a manner analogous to interactions between hosts. DNS servers currently maintain entries in their databases which allow them to find IP addresses of other DNS servers. These can be updated to include a combination of IP addresses and NSAP addresses of other servers. If an NSAP address is available, then the communication with the other DNS server can use CLNP, otherwise the interaction between DNS servers uses IP. Initially, it is likely that all communication between DNS servers will use IP (as at present). During the migration process, the DNS servers can be updated to communicate with each other using CLNP. 6 Other Technical Details 6.1 When 32-Bit IP Addresses Fail Eventually, the IP address space will become inadequate for global routing and addressing. At this point, the remaining older (not yet updated) IP hosts will not be able to interoperate directly over the global Internet. This time can be postponed by careful allocation of IP addresses and use of "Classless Inter-Domain Routing" (CIDR [3]), and if necessary by encapsulation (either of IP in IP, or IP in CLNP). In addition, the number of hosts affected by this can be minimized by aggressive deployment of updated software based on TUBA. When the IP address space becomes inadequate for global routing and addressing, for purposes of IP addressing the Internet will need to be split into "IP address domains". 32-bit IP addresses will be meaningful only within an address domain, allowing the old IP hosts to continue to be used locally. For communications between domains, there are two possibilities: (i) The user at an old system can use application layer relays (such as mail relays for 822 mail, or by Telnetting to an updated system in order to allow Telnet or FTP to a remote system in another domain); or (ii) Network Address Translation can be used [4]. 6.2 Applications which use IP Addresses Internally There are some application protocols (such as FTP and NFS) which pass around and use IP addresses internally. Migration to a larger address space (whether based on CLNP or other protocol) will require either that these applications be limited to local use (within an "IP address domain" in which 32-bit IP addresses are meaningful) or be updated to either: (i) Use larger network Callon [Page 7] RFC 1347 TUBA: A Proposal for Addressing and Routing June 1992 addresses instead of 32-bit IP addresses; or (ii) Use some other globally-significant identifiers, such as DNS names. 6.3 Updated Hosts in IP-Only Environments There may be some updated Internet hosts which are deployed in networks that do not yet have CLNP service, or where CLNP service is available locally, but not to the global Internet. In these cases, it will be necessary for the updated Internet hosts to know to initially send all Internet traffic (or all non-local traffic) using IP, even when the remote system also has been updated. There are several ways that this can be accomplished, such as: (i) The host could contains a manual configuration parameter controlling whether to always use IP, or to use IP or CLNP depending upon remote address; (ii) The DNS resolver on the host could be "lied to" to believe that all remote requests are supposed to go to some particular server, and that server could intervene and change all remote requests for long-addresses into requests for normal IP addresses. 6.4 Local Network Address Translation Network Address Translation (NAT [4]) has been proposed as a means to allow global communication between hosts which use locally-significant IP addresses. NAT requires that IP addresses be mapped at address domain boundaries, either to globally significant addresses, or to local addresses meaningful in the next address domain along the packet's path. It is possible to define a version of NAT which is "local" to an addressing domain, in the sense that (locally significant) IP packets are mapped to globally significant CLNP packets before exiting a domain, in a manner which is transparent to systems outside of the domain. NAT allows old systems to continue to be used globally without application gateways, at the cost of significant additional complexity and possibly performance costs (associated with translation or encapsulation of network packets at IP address domain boundaries). NAT does not address the problem of applications which pass around and use IP addresses internally. The details of Network Address Translation is outside of the scope of this document. 6.5 Streamlining Operation of CLNP CLNP contains a number of optional and/or variable length fields. For example, CLNP allows addresses to be any integral number of bytes up to 20 bytes in length. It is proposed to "profile" CLNP in order to allow streamlining of router operation. For example, this might involve specifying that all Internet hosts will use an NSAP address of precisely 20 bytes in length, and may specify which optional fields (if any) will be present in all CLNP packets. This can allow all CLNP packets transmitted by Internet Callon [Page 8] RFC 1347 TUBA: A Proposal for Addressing and Routing June 1992 hosts to use a constant header format, in order to speed up header parsing in routers. The details of the Internet CLNP profile is for further study. 7 References [1] "The IAB Routing and Addressing Task Force: Summary Report", work in progress. [2] "Protocol for Providing the Connectionless-Mode Network Service", ISO 8473, 1988. [3] "Supernetting: An Address Assignment and Aggregation Strategy", V.Fuller, T.Li, J.Yu, and K.Varadhan, March 1992. [4] "Extending the IP Internet Through Address Reuse", Paul Tsuchiya, December 1991. 8 Security Considerations Security issues are not discussed in this memo. 9 Author's Address Ross Callon Digital Equipment Corporation 550 King Street, LKG 1-2/A19 Littleton, MA 01460-1289 Phone: 508-486-5009 Email: Callon@bigfut.lkg.dec.com Callon [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -