📄 rfc1582.txt
字号:
Network Working Group G. MeyerRequest for Comments: 1582 Spider SystemsCategory: Standards Track February 1994 Extensions to RIP to Support Demand CircuitsStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract Running routing protocols on connection oriented Public Data Networks, for example X.25 packet switched networks or ISDN, can be expensive if the standard form of periodic broadcasting of routing information is adhered to. The high cost arises because a connection has to all practical intents and purposes be kept open to every destination to which routing information is to be sent, whether or not it is being used to carry user data. Routing information may also fail to be propagated if the number of destinations to which the routing information is to be sent exceeds the number of channels available to the router on the Wide Area Network (WAN). This memo defines a generalized modification which can be applied to Bellman-Ford (or distance vector) algorithm information broadcasting protocols, for example IP RIP, Netware RIP or Netware SAP, which overcomes the limitations of the traditional methods described above. The routing protocols support a purely triggered update mechanism on demand circuits on WANs. The protocols run UNMODIFIED on LANs or fixed point-to-point links. Routing information is sent on the WAN when the routing database is modified by new routing information received from another interface. When this happens a (triggered) update is sent to a list of destinations on other WAN interfaces. Because routing protocols are datagram based they are not guaranteed to be received by the peer router on the WAN. An acknowledgement and retransmission mechanism is provided to ensure that routing updates are received.Meyer [Page 1]RFC 1582 Demand RIP February 1994 The WAN circuit manager advises the routing applications on the reachability and non-reachability of destinations on the WAN.Acknowledgements I would like to thank colleagues at Spider, in particular Richard Edmonstone, Tom Daniel and Alam Turland, Yakov Rekhter (IBM), Martha Steenstrup (BBN), and members of the RIP-2 working group of the IETF for stimulating discussions and comments which helped to clarify this memo.Conventions The following language conventions are used in the items of specification in this document: o MUST -- the item is an absolute requirement of the specification. MUST is only used where it is actually required for interoperation, not to try to impose a particular method on implementors where not required for interoperability. o SHOULD -- the item should be followed for all but exceptional cir- cumstances. o MAY or optional -- the item is truly optional and may be followed or ignored according to the needs of the implementor. The words "should" and "may" are also used, in lower case, in their more ordinary senses.Table of Contents 1. Introduction ........................................... 3 2. Running a routing Protocol on the WAN .................. 4 2.1. Overview ......................................... 4 2.2. Presumption of Reachability ...................... 6 2.3. WAN Router list .................................. 7 2.4. Triggered Updates and Unreliable Delivery ........ 8 2.5. Guaranteeing delivery of Routing Updates ......... 8 2.6. The Routing Database ............................. 9 2.7. New Packet Types ................................. 10 2.8. Fragmentation .................................... 12 2.9. Preventing Queue Overload ........................ 13 3. IP Routing Information Protocol Version 1 .............. 13 4. IP Routing Information Protocol Version 2 .............. 16 5. Netware Routing Information Protocol ................... 17 6. Netware Service Advertising Protocol ................... 20 7. Timers ................................................. 24Meyer [Page 2]RFC 1582 Demand RIP February 1994 7.1. Database Timer ................................... 24 7.2. Retransmission Timer ............................. 25 7.3. Reassembly Timer ................................. 26 8. Implementation Considerations ...........................27 9. Security Considerations ................................ 27 10. References ............................................. 28 11. Author's Address ....................................... 291. Introduction Routers are used on connection oriented networks, such as X.25 packet switched networks and ISDN networks, to allow potential connectivity to a large number of remote destinations. Circuits on the Wide Area Network (WAN) are established on demand and are relinquished when the traffic subsides. Depending on the application, the connection between any two sites for user data might actually be short and relatively infrequent. Practical experience of routing shows that periodic 'broadcasting' of routing updates on the WAN is unsatisfactory on several counts: o Running a routing protocol like RIP is expensive if the standard form of transmitting routing information to every next hop router every 30 seconds is adhered to. The more routers there are wishing to exchange information the worse the problem. If there are N routers on the WAN, N * (N - 1) routing updates are sent over N * (N - 1)/2 connections every broadcast period. The expense arises because a circuit has to be kept open to each destination to which routing information is to be sent. Routing updates are sufficiently frequent that little benefit is obtainable on most networks by attempting to set up a call purely for the duration of the routing update. (There are often minimum call charges, or there is a charge to set up a call irrespective of what data is sent.) The option of reducing the 'broadcast' frequency, while reducing the cost, would make the system less responsive. o The number of networks to be connected (N) on the WAN can easily exceed the number of simultaneous calls (M) which the interface can support. If this happens the routing 'broadcast' will only reach M next hop routers, and (N - M) next hop routers will not receive the routing update. A basic rate ISDN interface can support 2 simultaneous calls, and even the number of logical channels most users subscribe to on an X.25 network is not large. There is no fundamental reason whyMeyer [Page 3]RFC 1582 Demand RIP February 1994 routing protocols should restrict the user to routing between so few sites. o Since there is no broadcast facility on the WAN, 'broadcasting' of routing information actually consists of sending the updates separately to all known locations. This means that N routing updates are queued for transmission on the WAN link (in addition to any data which might be queued). Routers take a pragmatic view on queuing datagrams for the WAN. If the queue length gets too long, so that datagrams at the end of the queue would take too long be transmitted in a reasonable time (say 1 to 2 seconds) the router may start discarding them. On an X.25 network, with slow line speeds (perhaps 9600 baud), it may not take too many routing updates to fulfill this condition if the link is also actively being used to carry user data. This memo addresses all the above problems. The approach taken is to modify the routing protocols so as to send information on the WAN only when there has been an update to the routing database OR a change in the reachability of a next hop router is indicated by the task which manages connections on the WAN. Because datagrams are not guaranteed to get through on all WAN media, an acknowledgement and retransmission system is required to provide reliability. This memo describes the modifications required for Bellman-Ford (or distance vector) algorithm information broadcasting protocols, such as IP RIP [1,2] or Netware RIP and SAP [3] on the WAN. The protocols run unmodified on Local Area Networks (LANs) or fixed point-to-point links, and so interoperate transparently with implementations adhering to the original specifications.2. Running Routing Protocols on the WAN2.1 Overview Multiprotocol routers are used on connection oriented Wide Area Networks (WANs), such as X.25 packet switched networks and ISDN networks, to interconnect LANs. By using the multiplexing properties of the underlying WAN technology, several LANs can be interconnected simultaneously through a single physical interface on the router. A circuit manager provides an interface between the connectionless network layers (IP, IPX, CLNP etc) and the connection oriented WAN (X.25 or ISDN). Figure 1 shows a schematic representative stackMeyer [Page 4]RFC 1582 Demand RIP February 1994 showing the relationship between routing protocols, the network layers, the circuit manager and the connection oriented WAN. -------------- --------- --------- | RIP | | RIP | | SAP | -------------- --------- --------- | | | -------------- | | | UDP | | | -------------- | | | | | -------------- ---------------- | IP | | IPX | -------------- ---------------- | | ------------------------------------------- | Circuit Manager | ------------------------------------------- |||||||||| |||||||||| --------------------------- | Connection Oriented | | WAN stack | --------------------------- A WAN circuit manager will support a variety of network layer protocols, on its upper interface. On its lower interface, it may support one or more subnetworks. A subnetwork may support a number of Virtual Circuits. Figure 1. Representative Multiprotocol Router stack The router has a translation table which relates the network layer address of the next hop router to the physical address used to establish a Virtual Circuit (VC) to it. Datagrams may be encapsulated in a header to distinguish the network layer protocol [5]. The circuit manager takes datagrams from the connectionless network layer protocols and (if one is not currently available) opens a VC to the next hop router. A VC can carry all traffic between two end- point routers for a given network layer protocol (or with appropriate encapsulation all network layer protocols). An idle timer is used to close the VC when the datagrams stop arriving at the circuit manager. Running routing protocols on the WAN has traditionally consisted of making small modifications to the methods used on LANs. WhereMeyer [Page 5]RFC 1582 Demand RIP February 1994 routing information would be broadcast periodically on a LAN interface, it is converted to a series of periodic updates sent to a list of addresses on the WAN. This memo targets two areas: o Eliminating the overkill inherent in periodic transmission of routing updates. o Overcoming the bandwidth limitations on the WAN: the number of simultaneous VCs to next hop routers and restricted data throughput which the WAN link can support. The first of these is overcome by transmitting routing updates (called routing responses) only when required: o Firstly, when a specific request for a routing update has been received. o Secondly, when the routing database is modified by new information from another interface. Update information received in this way is not normally propagated on other interfaces immediately, but is delayed for a few seconds to allow information from several updates to be grouped. o Thirdly, when the circuit manager indicates that a destination has changed from an unreachable (circuit down) to a reachable (circuit up) state. Because of the inherent unreliability of a datagram based system, both routing requests and routing responses require acknowledgement, and retransmission in the event of NOT receiving an acknowledgement. To overcome the bandwidth limitations the routing application can perform a form of self-imposed flow control, to spread routing updates out over a period of time.2.2 Presumption of Reachability
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -