📄 rfc2071.txt
字号:
Network Working Group P. FergusonRequest for Comments: 2071 cisco Systems, Inc.Category: Informational H. Berkowitz PSC International January 1997 Network Renumbering Overview: Why would I want it and what is it anyway?Status of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract The PIER [Procedures for Internet/Enterprise Renumbering] working group is compiling a series of documents to assist and instruct organizations in their efforts to renumber. However, it is becoming apparent that, with the increasing number of new Internet Service Providers (ISP's) and organizations getting connected to the Internet for the first time, the concept of network renumbering needs to be further defined. This document attempts to clearly define the concept of network renumbering and discuss some of the more pertinent reasons why an organization would have a need to do so.Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Background . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Network Renumbering Defined. . . . . . . . . . . . . . . . . 3 4. Reasons for Renumbering. . . . . . . . . . . . . . . . . . . 3 5. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6. Security Considerations . . . . . . . . . . . . . . . . . . 12 7. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . 12 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 13 9. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . 14Ferguson & Berkowitz Informational [Page 1]RFC 2071 Network Renumbering Overview January 19971. Introduction The popularity of connecting to the global Internet over the course of the past several years has spawned new problems; what most people casually refer to as "growing pains" can be attributed to more basic problems in understanding the requirements for Internet connectivity. However, the reasons why organizations may need to renumber their networks can greatly vary. We'll discuss these issues in some amount of detail below. It is not within the intended scope of this document to discuss renumbering methodologies, techniques, or tools.2. Background The ability for any network or interconnected devices, such as desktop PCs or workstations, to obtain connectivity to any potential destination in the global Internet is reliant upon the possession of unique IP host addresses [1]. A duplicate host address that is being used elsewhere in the Internet could best be described as problematic, since the presence of duplicate addresses would cause one of the destinations to be unreachable from some origins in the Internet. It should be noted, however, that globally unique IP addresses are not always necessary, and is dependent on the connectivity requirements [2]. However, the recent popularity in obtaining Internet connectivity has made these types of connectivity dependencies unpredictable, and conventional wisdom in the Internet community dictates that the various address allocation registries, such as the InterNIC, as well as the ISP's, become more prudent in their address allocation strategies. In that vein, the InterNIC has defined address allocation policies [3] wherein the majority of address allocations for end-user networks are accommodated by their upstream ISP, except in cases where dual- or multihoming and very large blocks of addresses are required. With this allocation policy becoming standard current practice, it presents unique problems regarding the portability of addresses from one provider to another. As a practical matter, end users cannot assume they "own" address allocations, if their intention is to be to have full connectivity to the global Internet. Rather, end users will "borrow" part of the address space of an upstream provider's allocation. The larger provider block from which their space is suballocated will have been assigned in a manner consistent with global Internet routing. Not having "permanent" addresses does not mean users will not have unique identifiers. Such identifiers are typically Domain Name System (DNS) [4] names for endpoints such as servers and workstations. Mechanisms such as the Dynamic Host Configuration Protocol (DHCP) [5]Ferguson & Berkowitz Informational [Page 2]RFC 2071 Network Renumbering Overview January 1997 can help automate the assignment and maintenance of host names, as well as the 'borrowed' addresses required for routing-level connectivity. The PIER Working Group is developing procedures and guidelines for detailed renumbering of specific technologies, such as routers [6]. PIER WG documents are intended to suggest methods both for making existing networks prepared for convenient renumbering, as well as for operational transition to new addressing schemes. Also, in many instances, organizations who have never connected to the Internet, yet have been using arbitrary blocks of addresses since their construction, have different and unique challenges.3. Network Renumbering Defined In the simplest of definitions, the exercise of renumbering a network consists of changing the IP host addresses, and perhaps the network mask, of each device within the network that has an address associated with it. This activity may or may not consist of all networks within a particular domain, such as FOO.EDU, or networks which comprise an entire autonomous system. Devices which may need to be renumbered, for example, are networked PC's, workstations, printers, file servers, terminal servers, and routers. Renumbering a network may involve changing host parameters and configuration files which contain IP addresses, such as configuration files which contain addresses of DNS and other servers, addresses contained in SNMP [7] management stations, and addresses configured in access control lists. While this is not an all- inclusive list, the PIER working group is making efforts to compile documentation to identify these devices in a more detailed fashion. Network renumbering need not be sudden activity, either; in most instances, an organization's upstream service provider(s) will allow a grace period where both the "old" addresses and the "new" addresses may be used in parallel.4. Reasons for Renumbering The following sections discuss particular reasons which may precipitate network renumbering, and are not presented in any particular order of precedence. They are grouped into reasons that primarily reflect decisions made in the past, operational requirements of the present, or plans for the future.Ferguson & Berkowitz Informational [Page 3]RFC 2071 Network Renumbering Overview January 1997 Some of these requirements reflect evolution in the organization's mission, such as a need to communicate with business partners, or to work efficiently in a global Internet. Other requirements reflect changes in network technologies.4.1 Past Many organizations implemented IP-based networks not for connectivity to the Internet, but simply to make use of effective data communications mechanisms. These organizations subsequently found valid reasons to connect to other organizations or the Internet in general, but found the address structures they chose incompatible with overall Internet practice. Other organizations connected early to the Internet, but did so at a time when address space was not scarce. Yet other organizations still have no requirement to connect to the Internet, but have legacy addressing structures that do not scale to adequate size.4.1.1 Initial addressing using non-unique addresses As recently as two years ago, many organizations had no intention of connecting to the Internet, and constructed their corporate or organizational network(s) using unregistered, non-unique network addresses. Obviously, as most problems evolve, these same organizations determined that Internet connectivity had become a valuable asset, and subsequently discovered that they could no longer use the same unregistered, non-unique network addresses that were previously deployed throughout their organization. Thus, the labor of renumbering to valid network addresses is now upon them, as they move to connect to the global Internet. While obtaining valid, unique addresses is certainly required to obtain full Internet connectivity in most circumstances, the number of unique addresses required can be significantly reduced by the implementation of Network Address Translation (NAT) devices [8] and the use of private address space, as specified in [9]. NAT reduces not only the number of required unique addresses, but also localizes the changes required by renumbering. It should also be noted that NAT technology may not always be a viable option, depending upon scale of addressing, performance or topological constraints.Ferguson & Berkowitz Informational [Page 4]RFC 2071 Network Renumbering Overview January 19974.1.2 Legacy address allocation There are also several instances where organizations were originally allocated very large amounts of address space, such as traditional "Class A" or "Class B" allocations, while the actual address requirements are much less than the total amount of address space originally allocated. In many cases, these organizations could suffice with a smaller CIDR allocation, and utilize the allocated address space in a more efficient manner. As allocation requirements become more stringent, mechanisms to review how these organizations are utilizing their address space could, quite possibly, result in a request to return the original allocation to a particular registry and renumber with a more appropriately sized address block.4.1.3 Limitations of Bridged Internetworks Bridging has a long and distinguished history in legacy networks. As networks grow, however, traditional bridged networks reach performance- and stability-related limits, including (but not limited to) broadcast storms. Early routers did not have the speed to handle the needs of some large networks. Some organizations were literally not able to move to routers until router forwarding performance improved to be comparable to bridges. Now that routers are of comparable or superior speed, and offer more robust features, replacing bridged networks becomes reasonable. IP addresses assigned to pure bridged networks tend not to be subnetted, yet subnetting is a basic approach for router networks. Introducing subnetting is a practical necessity in moving from bridging to routing.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -