📄 rfc435.txt
字号:
Network Working Group B. CosellRequest for Comment: 435 BBN-NETNIC: 13675 D. WaldenCategory: TELNET, Protocols, Echoing BBN-NETReferences: 318, 357 5 January 1973 TELNET Issues This RFC discusses a number of TELNET related issues which have been bothering us [1]. The basic, central issue we started from was that of echoing. We worked downward from our difficulties to discover the basic principles at the root of our unhappiness, and from there worked back upwards to design a scheme which we believe to be better. In this note we will discuss both the alternate scheme and its underlying principles. As something of a non sequitur, before discussing echoing we feel it expedient to dismiss one possible stumbling block, outright. HIDE YOUR INPUT may or may not be a good idea, this question not concerning us at the moment. Whatever the case, the issue of hiding input is certainly separable from that of echoing. We, therefore, strongly recommend that a STOP HIDING YOUR INPUT command be sanctioned to replace the multiplexing of this function on the NO ECHO command. Once this has been done, the pair of commands HIDE YOUR INPUT and STOP HIDING YOUR INPUT can be kept or discarded together, and we can discuss the issue of echoing independently of them.Echoing The basic observation that we made regarding echoing was that servers seem to be optimized to best handle terminals which either do their own echoing or do not, but not both. Therefore, the present TELNET echoing conventions, which prohibit the server from initiating a change in echo mode, seemed overly confining. The servers are burdened with users who are in the 'wrong' mode, in which they might not otherwise have to be, and users, both human and machine, are burdened with remembering the proper echoing mode, and explicitly setting it up, for all the different servers. It is our understanding that this prohibition was imposed on the servers to prevent loops from developing because of races which can arise when the server and user both try to set up an echo mode simultaneously. We will describe a method wherein both parties can initiate a change of echo mode and show that the method does not loop.Cosell & Walden [Page 1]RFC 435 TELNET Issues 5 January 1973 This alternate specification relies on three primary assumptions. First as above, the server, as well as the user, should be able to suggest the echo mode. Second, all terminals must be able to provide their own echoes, either internally or by means of the local Host. Third, all servers must be able to operate in a mode which assumes that a remote terminal is providing its own echoes. Both of these last two result from the quest for a universal, minimal basis upon which to build. It is fairly easy for a Host which normally supplies echoes to disable the appropriate code, but it will difficult for a Host which does not do echoing to integrate such routines into its system similarly, it is easier for a local Host to supply echoes to a terminal which cannot provides its own, but it borders on the impossible to undo echoing in a terminal which has automatic echoing built into it. Our proposed specification would use the present ECHO and NO ECHO commands as follows: ECHO, when sent by the server to the user, would mean 'I'll echo to you' ECHO, when sent by the user to the server, would mean 'You echo to me'. NO ECHO, when sent by the server to the user, would mean 'I'll not echo to you'; NO ECHO, when sent by the user to the server, would mean 'Don't you echo to me'. These are, of course, nearly the same meanings that the commands currently have, although most current implementations seem to invert the server-to- user meanings. In our specification, whenever a connection is opened both server and user assume that the user is echoing locally. If the user would, in fact, prefer the server to echo, the user could send off an ECHO command. Similarly, if the server prefers to do the echoing (for instance, because the server system is optimized for very interactive echoing), the server could send off an ECHO command. Neither is required to do anything, it is only a matter of preference. Upon receipt of either command by either party, if that is an admissible mode of operation the recipient should begin operating in that mode, and if such operation reflects a change in mode, it should respond with the same command to confirm that (and when) the changeover took place. If the received command request an inadmissible mode of operation, then the command's inverse should be sent as a refusal (this must be NO ECHO, since neither party can refuse a change into NO ECHO). To state these rules more formally: 1) Both server and user assume that a connection is initially in NO ECHO mode. 2) Neither party can refuse a request to change into NO ECHO mode. 3) Either party may send an unsolicited command only to request a change in mode.Cosell & Walden [Page 2]RFC 435 TELNET Issues 5 January 1973 4) A party only changes its echo mode when it receives an admissible request. 5) When a command is received, the party replies with its echo mode, unless it did not have to change mode to honor the request. Several properties of this scheme are worthy of note: 1) NO ECHO is retained as the nominal connection mode. A connection will work in ECHO mode only when both parties agree to operate that way. 2) The procedure cannot loop. Regardless of which party (or both) initiates a change, or in what time order, there are at most three commands sent between the parties [2]. 3) Servers are free to specify their preferred mode of operation. Thus, human, or machine, users do not have to learn the proper mode for each server.Three Principles Let us mention the general principles we alluded to at the beginning of this note. The principles are: default implementation, negotiated options and symmetry. The principle of default implementation merely states that for all options, defaults are declare which must be implemented. It is this principle which leads us to seek out the 'minimum' for each option (to keep the required burden on everybody as small as possible), and prevents loops in protocol. The principle of negotiated options merely states that options must be agreed upon by all (both) parties concerned. It is this principle which dictated the positive/negative acknowledgement scheme. The principle of symmetry merely states that neither party should have to 'know' whether it is the server or the user. Our scheme, as described thus far, is not totally symmetrical we will consider this matter in a later section. The ECHOING scheme we have described, together with the principles stated above, form the heart of our comments on the TELNET protocol. The remainder of this note consists of further ways in which the protocol can be expanded on the whole, these suggestions are all really only applications and development of the principles we have already put forward. However, the fecundity of these expansions, and the 'good feel' they have, make us yet more convinced of the ' rightness' of our original proposals.Cosell & Walden [Page 3]RFC 435 TELNET Issues 5 January 1973 Thus far, we have made a simple, concrete suggestion that we believe should be immediately sanctioned. Looking beyond that proposal, however, has suggestion a large number of further, more ambitious changes. The remainder of this RFC describes ideas which we don't feel have the immediacy of the proposal above, but should, nonetheless, be kept in mind if the network community decides to embark on revamping the protocol.Synchronization One complaint we have heard about the present convention for establishing an echoing mode is about the lack of a provision to synchronize a change of echoing mode with the user-to-server data stream our scheme, too, is guilty on this count. John Davidson of the University of Hawaii has documented, in RFC 357, a more elaborate echoing scheme which doesn't have this problem. We, however, feel that it is possible to eliminate most of the trouble involved with normal changing of echo mode at a more modest cost than that required by the highly interactive scheme described by Davidson. We can do this by borrowing a small piece of that scheme. The rule we would incorporate is that whenever a party initiates a request for a change in echo mode, it then buffers, without transmitting or processing, all data in the user-to-server data stream until it receives an acknowledgement, positive or negative, at which time it deals with the buffered data in the newly negotiated mode. Since with both our proposed and the current schemes such a request is guaranteed to be acknowledgement, the buffering time is bounded. An important aspect of this technique of eliminating the synchronization problem is that it need not ever become part of the official protocol. Since its operation is entirely internal to the server or user, each may independently weigh the value of elegance against the cost of the required code and buffer space.Other options Abhay Bushan has suggested to us that whether the user and server operate line-at-a-time or character-at-a-time mode (see RFC 318) should also be a negotiated option. Further, he suggested that whether the terminal follows the TELNET end-of-line convention or not should also be negotiated. Thus, when a connection is opened, in addition to being set to NO ECHO mode, the terminal would also be set to LINE-AT-A-TIME and EOL modes. We could augment the command space with the new commands LINE, NO LINE (=CHARACTER), EOL and NO EOL (=separate CR and LF).Cosell & Walden [Page 4]RFC 435 TELNET Issues 5 January 1973 Once started in this direction, we found several further applications. HIDE YOUR INPUT could be made an option, as could Davidson's echoing scheme, and even the character set to be used! Consider that an APL subsystem might well want to suggest to its user that EBCDIC be used for the connection. In mentionaing that the character set could be negotiated, it was implicit that 7-bit USASCII was the default. The possibility of having the default be straight binary suggests itself. If we augmented the protocol with a QUOTE character, the byte after which were to be always interpreted as data, then codes 128-255 could be retained as the 'TELNET command space' independently of the data mode in use by merely prefixing all data bytes in this region with a QUOTE. If BINARY were a permissible data mode, then it is easy to visualize many higher level protocols, e.g., perhaps, File Transfer and Graphics, being built on top of, and into, the TELNET protocol. What we would have accomplished is to promote TELNET from being a constrained, terminal-oriented protocol to its being a flexible, general protocol for any type of byte oriented communication. With such a backbone, many of the higher level protocols could be designed and implemented more quickly and less painfully -- conditions which would undoubtedly hasten their universal acceptance and availability [3]. Looking toward a better world of the future, we have come up with a more compact and flexible command scheme. We'll describe it after the next section.Symmetry Some of the TENEX group (in particular, Thomas, Burchfiel and Tomlinson) have pointed out to us that although we have made the rules for the protocol symmetrical, we have not made the meanings of the commands symmetrical. For example, the interpretations of the ECHO command -- 'I'll echo to you' and 'You echo to me' -- implicitly assume that both the server and user know who is which. This is a problem not only for server-server connections where it is not clear which is the user, but also for user-user connections, e.g., in linking Teletypes together, where it is not clear which is the server. Responding to this, we came to understand that there are only five reasonable modes of operation for the echoing on a connection pair [4]:Cosell & Walden [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -