📄 rfc1152.txt
字号:
causal consistency, in which systems ensure that operations happen in the proper order, without synchronizing through a single system.Session 6: Hosts and Host Interfaces (Gary Delp, Chair) Gary Delp (IBM Research) discussed several issues involved in the increase in speed of network attachment to hosts of increasing performance. These issues included: - Media Access - There are aspects of media access that are best handled by dedicated silicon, but there are also aspects that are best left to a general-purpose processor. - Compression - Some forms of compression/expansion may belong on the network interface; most will be application-specific. - Forward Error Correction - The predicted major packet loss mode is packet drops due to internal network congestion, rather than bit errors, so forward error correction internal to a packet may not be useful. On the other hand, the latency cost of not being able to recover from bit errors is very high. Some proposals were discussed which suggest that FEC among packet groups, with dedicated hardware support, is the way to go. - Encryption/Decryption - This is a computationally intensive task. Most agree that if it is done with all traffic, some form of hardware support is helpful. Where does it fit in the protocol stack? - Application Memory Mapping - How much of the host memory structure should be exposed to the network interface? Virtual memory and paging complicate this issue considerably. - Communication with Other Channel Controllers - Opinions were expressed that ranged from absolutely passive network interfaces to interfaces that run major portions of the operating system and bus arbitration codes. - Blocking/Segmentation - The consensus is that B/S shouldPartridge [Page 10]RFC 1152 IRSG Workshop Report April 1990 occur wherever the transport layer is processed. - Routing - This is related to communications with other controllers. A routing-capable interface can reduce the bus requirements by a factor of two. - Intelligent participation in the host structure as a gateway, router, or bridge. - Presentation Layer issues - All of the other overheads can be completely overshadowed by this issue if it is not solved well and integrated into the overall host architecture. This points out the need for some standardization of representation (IEEE floating point, etc.) Eric Cooper (CMU) summarized some initial experience with Nectar, a high-speed fiber-optic LAN that has been built at Carnegie Mellon. Nectar consists of an arbitrary mesh of crossbar switches connected by means of 100 Mbps fiber-optic links. Hosts are connected to crossbar switches via communication processor boards called CABs. The CAB presents a memory-mapped interface to user processes and off-loads all protocol processing from the host. Preliminary performance figures show that latency is currently limited by the number of VME operations required by the host-to-CAB shared memory interface in the course of sending and receiving a message. The bottleneck in throughput is the speed of the VME interface: although processes running on the CABs can communicate over Nectar at 70 Mbps, processes on the hosts are limited to approximately 25 Mbps. Jeff Mogul (DEC Western Research Lab) made these observations: Although off-board protocol processors have been a popular means to connect a CPU to a network, they will be less useful in the future. In the hypothetical workstation of the late 1990s, with a 1000-MIPS CPU and a Gbps LAN, an off-board protocol processor will be of no use. The bottleneck will not be the computation required to implement the protocol, but the cost of moving the packet data into the CPU's cache and the cost of notifying the user process that the data is available. It will take far longer (hundreds of instruction cycles) to perform just the first cache miss (required to get the packet into the cache) than to perform all of the instructions necessary to implement IP and TCP (perhaps a hundred instructions). A high-speed network interface for a reasonably-priced system must be designed with this cost structure in mind; it should also eliminate as many CPU interrupts as possible, since interrupts are also very expensive. It makes more sense to let a user process busy-wait on aPartridge [Page 11]RFC 1152 IRSG Workshop Report April 1990 network-interface flag register than to suspend it and then take an interrupt; the normal CPU scheduling mechanism is more efficient than interrupts if the network interactions are rapid. David Greaves (Olivetti Research Ltd.) briefly described the need for a total functionality interface architecture that would allow the complete elimination of communication interrupts. He described the Cambridge high-speed ring as an ATM cell-like interconnect that currently runs at 500-1000 MBaud, and claims that ATM at that speed is a done deal. Dave Tennenhouse also commented that ATM at high speeds with parallel processors is not the difficult thing that several others have been claiming. Bob Beach (Ultra Technologies) started his talk with the observation that networking could be really fast if only we could just get rid of the hosts. He then supported his argument with illustrations of 80-MByte/second transfers to frame buffers from Crays that drop to half that speed when the transfer is host-to-host. Using null network layers and proprietary MAC layers, the Ultra Net system can communicate application-to-application with ISO TP4 as the transport layer at impressive rates of speed. The key to high-speed host interconnects has been found to be both large packets and large (on the order of one megabyte) channel transfer requests. Direct DMA interfaces exhibit much smaller transfer latencies. Derek McAuley (University Cambridge Computer Laboratory) described work of the Fairisle project which is producing an ATM network based on fast packet switches. A RISC processor (12 MIPS) is used in the host interface to do segmentation/reassembly/demultiplexing. Line rates of up to 150 Mbps are possible even with this modest processor. Derek has promised that performance and requirement results from this system will be published in the spring. Bryan Lyles (XEROX PARC) volunteered to give an abbreviated talk in exchange for discussion rights. He reported that Xerox PARC is interested in ATM technology and wants to install an ATM LAN at the earliest possible opportunity. Uses will include such applications as video where guaranteed quality of service (QOS) is required. ATM technology and the desire for guaranteed QOS places a number of new constraints on the host interface. In particular, they believe that they will be forced towards rate-based congestion control. Because of implementation issues and burst control in the ATM switches, the senders will be forced to do rate based control on a cell-by-cell basis. Don Tolmie (Los Alamos National Laboratory) described the High- Performance Parallel Interface (HPPI) of ANSI task group X3T9.3. The HPPI is a standardized basic building block for implementing, orPartridge [Page 12]RFC 1152 IRSG Workshop Report April 1990 connecting to, networks at the Gbps speeds, be they ring, hub, cross-bar, or long-haul based. The HPPI physical layer operates at 800 or 1600 Mbps over 25-meter twisted-pair copper cables in a point-to-point configuration. The HPPI physical layer has almost completed the standards process, and a companion HPPI data framing standard is under way, and a Fiber Channel standard at comparable speeds is also being developed. Major companies have completed, or are working on, HPPI interfaces for supercomputers, high-end workstations, fiber-optic extenders, and networking components. The discussion at the end of the session covered a range of topics. The appropriateness of outboard protocol processing was questioned. Several people agreed that outboarding on a Cray (or similar cost/performance) machines makes economic sense. Van Jacobson contended that for workstations, a simple memory-mapped network interface that provides packets visible to the host processor may well be the ideal solution. Bryan Lyles reiterated several of his earlier points, asserting that when we talk about host interfaces and how to build them we should remember that we are really talking about process-to-process communication, not CPU-to-CPU communication. Not all processes run on the central CPU, e.g., graphics processors and multimedia. Outboard protocol processing may be a much better choice for these architectures. This is especially true when we consider that memory/bus bandwidth is often a bottleneck. When our systems run out of bandwidth, we are forced towards a NUMA model and multiple buses to localize memory traffic. Because of QOS issues, the receiver must be able to tell the sender how fast it can send. Throwing away cells (packets) will not work because unwanted packets will still clog the receiver's switch interface, host interface, and requires processing to throw away.Session 7: Congestion Control (Scott Shenker, Chair) The congestion control session had six talks. The first two talks were rather general, discussing new approaches and old myths. The other four talks discussed specific results on various aspects of packet (or cell) dropping: how to avoid drops, how to mitigate their impact on certain applications, a calculation of the end-to-end throughput in the presence of drops, and how rate-based flow control can reduce buffer usage. Thumbnail sketches of the talks follow. In the first of the general talks, Scott Shenker (XEROX PARC) discussed how ideas from economics can be applied to congestionPartridge [Page 13]RFC 1152 IRSG Workshop Report April 1990 control. Using economics, one can articulate questions about the goals of congestion control, the minimal feedback necessary to achieve those goals, and the incentive structure of congestion control. Raj Jain (DEC) then discussed eight myths related to congestion control in high-speed networks. Among other points, Raj argued that (1) congestion problems will not become less important when memory, processors, and links become very fast and cheap, (2) window flow control is required along with rate flow control, and (3) source-based controls are required along with router-based control. In the first of the more specific talks, Isidro Castineyra (BBN Communications Corporation) presented a back-of-the-envelope calculation on the effect of cell drops on end-to-end throughput. While at extremely low drop rates the retransmission strategies of go-back-n and selective retransmission produced similar end-to-end throughput, at higher drop rates selective retransmission achieved much higher throughput. Next, Tony DeSimone (AT&T) told us why high-speed networks are not just fast low-speed networks. If the buffer/window ratio is fixed, the drop rate decreases as the network speed increases. Also, data was presented which showed that adaptive rate control can greatly decrease buffer utilization. Jamal Golestani (Bellcore) then presented his work on stop-and-go queueing. This is a simple stalling algorithm implemented at the switches which guarantees no dropped packets and greatly reduces delay jitter. The algorithm requires prior bandwidth reservation and some flow control on sources, and is compatible with basic FIFO queues. In the last talk, Victor Frost (University of Kansas) discussed the impact of different dropping policies on the perceived quality of a voice connection. When the source marks the drop priority of cells and the switch drops low priority cells first, the perceived quality of the connection is much higher than when cells are dropped randomly.Session 8: Switch Architectures (Dave Sincoskie, Chair) Dave Mills (University of Delaware) presented work on a project now under way at the University of Delaware to study architectures and protocols for a high-speed network and packet switch capable of operation to the gigabit regime over distances spanning the country. It is intended for applications involving very large, very fast, very bursty traffic typical of supercomputing, remote sensing, and visualizing applications. The network is assumed to be composed of fiber trunks, while the switch architecture is based on a VLSI baseband crossbar design which can be configured for speeds from 25
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -