📄 rfc1152.txt
字号:
providing a multicast capability is critical. Finally, Greg Watson (HP) presented an overview of ongoing work at the Hewlett-Packard Bristol lab. Their belief is that, while applications for high-speed networks employing supercomputers are the the technology drivers, the economic drivers will be applications requiring moderate bandwidth (say 10 Mbps) that are used by everyone on the network. They are investigating how multimedia workstations can assist distributed research teams - small teams of people who are geographically dispersed and who need to work closely on some area of research. Each workstation provides multiple video channels, together with some distributed applications running on personal computers. The bandwidth requirements per workstation are about 40 Mbps, assuming a certain degree of compression of the video channels. Currently the video is distributed as an analog signal over CATV equipment. Ideally it would all be carried over a single, unified wide-area network operating in the one-to-several Gbps range.Partridge [Page 5]RFC 1152 IRSG Workshop Report April 1990 They have constructed a gigabit network prototype and are currently experimenting with uncompressed video carried over the same network as normal data traffic.Session 3: Lightwave Technology and its Implications (Ira Richer, Chair) Bob Kennedy (MIT) opened the session with a talk on network design in an era of excess bandwidth. Kennedy's research is focused on multi- purpose networks in which bandwidth is not a scarce commodity, networks with bandwidths of tens of terahertz. Kennedy points out that a key challenge in such networks is that electronics cannot keep up with fiber speeds. He proposes that we consider all-optical networks (in which all signals are optical) with optoelectronic nodes or gateways capable of recognizing and capturing only traffic destined for them, using time, frequency, or code divisions of the huge bandwidth. The routing algorithms in such networks would be extremely simple to avoid having to convert fiber-optics into slower electronic pathways to do switching. Rich Gitlin (AT&T Bell Labs) gave a talk on issues and opportunities in broadband telecommunications networks, with emphasis on the role of fiber optic and photonic technology. A three-level architecture for a broadband telecommunications network was presented. The network is B-ISDN/ATM 150 (Mbps) based and consists of: customer premises equipment (PBXs, LANs, multimedia terminals) that access the network via a router/gateway, a Network Node (which is a high performance ATM packet switch) that serves both as a LAN-to-LAN interconnect and as a packet concentrator for traffic destined for CPE attached to other Network Nodes, and a backbone layer that interconnects the NODES via a Digital Cross-Connect System that provide reconfigurable SONET circuits between the NODES (the use of circuits minizes delay and avoids the need for implementation of peak-transmission-rate packet switching). Within this framework, the most likely places for near-term application of photonics, apart from pure transport (ie, 150 Mbps channels in a 2.4 Gbps SONET system), are in the Cross-Connect (a Wavelength Division Multiplexed based structure was described) and in next-generation LANs that provide Gigabit per second throughputs by use of multiple fibers, concurrent transmission, and new access mechanisms (such as store and forward). A planned interlocation Bell Labs multimedia gigabit/sec research network, LuckyNet, was described that attempts to extend many of the above concepts to achieve its principal goals: provision of a gigabit per second capability to a heterogeneous user community, the stimulation of applications that require Gpbs throughput (initial applications are video conferencing and LAN interconnect), and, to the extent possible, be based on standards so that interconnection with other Gigabit testbeds is possible.Partridge [Page 6]RFC 1152 IRSG Workshop Report April 1990Session 4: High Speed Networks and the Phone System (David Tennenhouse, Chair) David Tennenhouse (MIT) reported on the ATM workshop he hosted the two days previous to this workshop. His report will appear as part of the proceedings of his workshop. Wally St. John (LANL) followed with a presentation on the Los Alamos gigabit testbed. This testbed is based on the High Performance Parallel Interface (HPPI) and on crossbar switch technology. LANL has designed its own 16x16 crossbar switch and has also evaluated the Network Systems 8x8 crossbar switch. Future plans for the network include expansion to the CASA gigabit testbed. The remote sites (San Diego Supercomputer Center, Caltech, and JPL) are configured similarly to the LANL testbed. The long-haul interface is from HPPI to/from SONET (using ATM if in time). Wally also discussed some of the problems related to building a HPPI-SONET gateway: a) Flow control. The HPPI, by itself, is only readily extensible to 64 km because of the READY-type flow control used in the physical layer. The gateway will need to incorporate larger buffers and independent flow control. b) Error-rate expectations. SONET is only specified to have a 1E-10 BER on a per hop basis. This is inadequate for long links. Those in the know say that SONET will be much better but the designer is faced with the poor BER in the SONET spec. c) Frame mapping. There are several interesting issues to be considered in finding a good mapping from the HPPI packet to the SONET frame. Some are what SONET STS levels will be available in what time frame, the availability of concatenated service, and the error rate issue. Dan Helman (UCSC) talked about work he has been doing with Darrell Long to examine the interconnection of Internet networks via an ATM B-ISDN network. Since network interfaces and packet processing are the expensive parts of high-speed networks, they believe it doesn't make sense to use the ATM backbone only for transmission; it should be used for switching as well. Therefore gateways (either shared by a subnet or integrated with fast hosts) are needed to encapsulate or convert conventional protocols to ATM format. Gateways will be responsible for caching connections to recently accessed destinations. Since many short-lived low-bandwidth connections as foreseen (e.g., for mail and ftp), routing in the ATM network (to set up connections) should not be complicated - a form of static routingPartridge [Page 7]RFC 1152 IRSG Workshop Report April 1990 should be adequate. Connection performance can be monitored by the gateways. Connections are reestablished if unacceptable. All decision making can be done by gateways and route servers at low packet rates, rather than the high aggregate rate of the ATM network. One complicated issue to be addressed is how to transparently introduce an ATM backbone alongside the existing Internet.Session 5: Distributed Systems (David Farber, Chair) Craig Partridge (BBN Systems and Technologies) started this session by arguing that classic RPC does not scale well to gigabit-speed networks. The gist of his argument was that machines are getting faster and faster, while the round-trip delay of networks is staying relatively constant because we cannot send faster than the speed of light. As a result, the effective cost of doing a simple RPC, measured in instruction cycles spent waiting at the sending machine, will become extremely high (millions of instruction cycles spent waiting for the reply to an RPC). Furthermore, the methods currently used to improve RPC performance, such as futures and parallel RPC, do not adequately solve this problem. Future requests will have to be made much much earlier if they are to complete by the time they are needed. Parallel RPC allows multiple threads, but doesn't solve the fact that each individual sequence of RPCs still takes a very long time. Craig went on to suggest that there are at least two possible ways out of the problem. One approach is to try to do a lot of caching (to waste bandwidth to keep the CPU fed). A limitation of this approach is that at some point the cache becomes so big that you have to keep in consistent with other systems' caches, and you suddenly find yourself doing synchronization RPCs to avoid doing normal RPCs (oops!). A more promising approach is to try to consolidate RPCs being sent to the same machine into larger operations which can be sent as a single transaction, run on the remote machine, and the result returned. (Craig noted that he is pursuing this approach in his doctoral dissertation at Harvard). Ken Schroder (BBN Systems and Technologies) gave a talk on the challenges of combining gigabit networks with wide-area heterogeneous distributed operating systems. Ken feels the key goals of wide area distributed systems will be to support large volume data transfers between users of conferencing and similar applications, and to deliver information to a large number of end users sharing services such as satellite image databases. These distributed systems will be motivated by the natural distribution of users, of information and of expensive special purpose computer resources. Ken pointed to three of the key problems that must be addressed atPartridge [Page 8]RFC 1152 IRSG Workshop Report April 1990 the system level in these environments: how to provide high utilization; how to manage consistency and synchronization in the presence of concurrency and non-determinism; and how to construct scalable system and application services. Utilization is key only to high performance applications, where current systems would be limited by the cost of factors such as repeatedly copying messages, converting data representations and switching between application and operating system. Concurrency can be used improve performance, but is also likely to occur in many programs inadvertently because of distribution. Techniques are required both to exploit concurrency when it is needed, and to limit it when non-determinism can lead to incorrect results. Extensive research on ensuring consistency and resolving resource conflicts has been done in the database area, however distributed scheduling and the need for high availability despite partial system failures introduce special problems that require additional research. Service scalability will be required to support customer needs as the size of the user community grow. It will require attention both ensuring that components do not break when they are subdivided across additional processors to support a larger user population, and to ensure that performance does to each user can be affordably maintained as new users are added. In a bold presentation, Dave Cheriton (Stanford) made a sweeping argument that we are making a false dichotomy between distributed operating systems and networks. In a gigabit world, he argued, the major resource in the system is the network, and in a normal operating system we would expect such a critical resource to be managed by the operating system. Or, put another way, the gigabit network distributed operating system should manage the network. Cheriton went on to say that if a gigabit distributed operating system is managing the network, then it is perfectly reasonable to make the network very dumb (but fast) and put the system intelligence in the operating systems on the hosts that form the distributed system. In another talk on interprocess communication, Jonathan Smith (UPenn) again raised the problem of network delay limiting RPC performance. In contrast to Partridge's earlier talk, Smith argued that the appropriate approach is anticipation or caching. He justified his argument with a simple cost example. If a system is doing a page fetch between two systems which have a five millisecond round-trip network delay between them, the cost of fetching n pages is: 5 msec + (n-1) * 32 usec Thus the cost of fetching an additional page is only 32 usec, but underfetching and having to make another request to get a page you missed costs 5000 usec. Based on these arguments, Smith suggestedPartridge [Page 9]RFC 1152 IRSG Workshop Report April 1990 that we re-examine work in virtual memory to see if there are comfortable ways to support distributed virtual memory with anticipation. In the third talk on RPC in the session, Tommy Joseph (Olivetti), for reasons similar to those of Partridge and Smith, argued that we have to get rid of RPC and give programmers alternative programming paradigms. He sketched out ideas for asynchronous paradigms using
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -