📄 rfc1461.txt
字号:
Network Working Group D. ThroopRequest for Comments: 1461 Data General Corporation May 1993 SNMP MIB extension for Multiprotocol Interconnect over X.25Status of this Memo This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing Multiprotocol Interconnect (including IP) traffic carried over X.25. The objects defined here, along with the objects in the "SNMP MIB extension for the Packet Layer of X.25"[8], "SNMP MIB extension for LAPB"[7], and the "Definitions of Managed Objects for RS-232-like Hardware Devices" [6], combine to allow management of the traffic over an X.25 protocol stack.Table of Contents 1. The Network Management Framework ......................... 1 2. Objects .................................................. 2 2.1 Format of Definitions ................................... 2 3. Overview ................................................. 3 3.1 Scope ................................................... 3 3.2 Structure of MIB objects ................................ 3 4. Definitions .............................................. 4 5. Acknowledgements ......................................... 19 6. References ............................................... 20 7. Security Considerations ................................... 21 8. Author's Address ......................................... 211. The Network Management Framework The Internet-standard Network Management Framework consists of three components. These components give the rules for defining objects, the definitions of objects, and the protocol for manipulating objects.Throop [Page 1]RFC 1461 Multiprotocol Interconnect on X.25 MIB May 1993 The network management framework structures objects in an abstract information tree. The branches of the tree name objects and the leaves of the tree contain the values manipulated to effect management. This tree is called the Management Information Base or MIB. The concepts of this tree are given in STD 16, RFC 1155, "The Structure of Management Information" or SMI [1]. The SMI defines the trunk of the tree and the types of objects used when defining the leaves. STD 16, RFC 1212, "Towards Concise MIB Definitions" [3], defines a more concise description mechanism that preserves all the principals of the SMI. The core MIB definitions for the Internet suite of protocols can be found in STD 17, RFC 1213 [4], "Management Information Base for Network Management of TCP/IP-based internets". STD 15, RFC 1157 [2] defines the SNMP protocol itself. The protocol defines how to manipulate the objects in a remote MIB. The tree structure of the MIB allows new objects to be defined for the purpose of experimentation and evaluation.2. Objects The definition of an object in the MIB requires an object name and type. Object names and types are defined using the subset of Abstract Syntax Notation One (ASN.1) [5] defined in the SMI [1]. Objects are named using ASN.1 object identifiers, administratively assigned names, to specify object types. The object name, together with an optional object instance, uniquely identifies a specific instance of an object. For human convenience, we often use a textual string, termed the descriptor, to refer to objects. Objects also have a syntax that defines the abstract data structure corresponding to that object type. The ASN.1 language [5] provides the primitives used for this purpose. The SMI [1] purposely restricts the ASN.1 constructs which may be used for simplicity and ease of implementation.2.1. Format of Definitions Section 4 contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in "Towards Concise MIB Definitions" [3].Throop [Page 2]RFC 1461 Multiprotocol Interconnect on X.25 MIB May 19933. Overview3.1. Scope Instances of the objects defined below provide management information for Multiprotocol Interconnect traffic on X.25 as defined in RFC 1356 [9]. That RFC describes how X.25 can be used to exchange IP or network level protocols. The multiprotocol packets (IP, CLNP, ES-IS, or SNAP) are encapsulated in X.25 frames for transmission between nodes. All nodes that implement RFC 1356 must implement this MIB. The objects in this MIB apply to the software in the node that manages X.25 connections and performs the protocol encapsulation. A node in this usage maybe the end node source or destination host for the packet, or it may be a router or bridge responsible for forwarding the packet. Since RFC 1356 requires X.25, nodes that implement RFC 1356 must also implement the X.25 MIB, RFC 1382. This MIB only applies to Multiprotocol Interconnect over X.25 service. It does not apply to other software that may also use X.25 (for example PAD). Thus the presence, absence, or operation of such software will not directly affect any of these objects. (However connections in use by that software will appear in the X.25 MIB).3.2. Structure of MIB objects The objects of this MIB are organized into three tables: the mioxPleTable, the mioxPeerTable, and the mioxPeerEncTable. All objects in all tables are mandatory for conformance with this MIB. The mioxPleTable defines information relative to an interface used to carry Multiprotocol Interconnect traffic over X.25. Such interfaces are identified by an ifType object in the Internet-standard MIB [4] of ddn-x25 or rfc877-x25. Interfaces of type ddn-x25 have a self contained algorithm for translating between IP addresses and X.121 addresses. Interfaces of type rfc877-x25 do not have such an algorithm. Note that not all X.25 Interfaces will be used to carry Multiprotocol Interconnect traffic. Those interfaces not carrying such traffic will not have entries in the mioxPleTable. The entries in the mioxPleTable are only for interfaces that do carry Multiprotocol Interconnect traffic over X.25. Entries in the mioxPleTable are indexed by ifIndex to make it easy to find the mioxPleTable entry for an interface. The mioxPeerTable contains information needed to contact an X.25 Peer to exchange packets. This includes information such as the X.121 address of the peer and a pointer to the X.25 call parameters needed to place the call. The instance identifiers used for the objects inThroop [Page 3]RFC 1461 Multiprotocol Interconnect on X.25 MIB May 1993 this table are independent of any interface or other tables defined outside this MIB. This table contains the ifIndex value of the X.25 interface to use to call a peer. The mioxPeerEncTable contains information about the encapsulation type used to communicate with a peer. This table is an extension of the mioxPeerTable in its instance identification. Each entry in the mioxPeerTable may have zero or more entries in this table. This table will not have any entries that do not have correspondent entries in mioxPeerTable.4. Definitions MIOX25-MIB DEFINITIONS ::= BEGIN IMPORTS Counter, TimeTicks FROM RFC1155-SMI OBJECT-TYPE FROM RFC-1212 DisplayString, transmission, ifIndex FROM RFC1213-MIB InstancePointer FROM RFC1316-MIB X121Address FROM RFC1382-MIB PositiveInteger FROM RFC1381-MIB; -- IP over X.25 MIB miox OBJECT IDENTIFIER ::= { transmission 38 } mioxPle OBJECT IDENTIFIER ::= { miox 1 } mioxPeer OBJECT IDENTIFIER ::= { miox 2 } -- ########################################################### -- Ple Table -- ########################################################### -- Systems that implement RFC 1356 must also implement -- all objects in this group. mioxPleTable OBJECT-TYPE SYNTAX SEQUENCE OF MioxPleEntryThroop [Page 4]RFC 1461 Multiprotocol Interconnect on X.25 MIB May 1993 ACCESS not-accessible STATUS mandatory DESCRIPTION "This table contains information relative to an interface to an X.25 Packet Level Entity (PLE)." ::= { mioxPle 1 } mioxPleEntry OBJECT-TYPE SYNTAX MioxPleEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "These objects manage the encapsulation of other protocols within X.25." INDEX { ifIndex } ::= { mioxPleTable 1 } MioxPleEntry ::= SEQUENCE { mioxPleMaxCircuits INTEGER, mioxPleRefusedConnections Counter, mioxPleEnAddrToX121LkupFlrs Counter, mioxPleLastFailedEnAddr OCTET STRING, mioxPleEnAddrToX121LkupFlrTime TimeTicks, mioxPleX121ToEnAddrLkupFlrs Counter, mioxPleLastFailedX121Address X121Address, mioxPleX121ToEnAddrLkupFlrTime TimeTicks, mioxPleQbitFailures Counter, mioxPleQbitFailureRemoteAddress X121Address, mioxPleQbitFailureTime TimeTicks, mioxPleMinimumOpenTimer PositiveInteger, mioxPleInactivityTimer PositiveInteger, mioxPleHoldDownTimer PositiveInteger, mioxPleCollisionRetryTimerThroop [Page 5]RFC 1461 Multiprotocol Interconnect on X.25 MIB May 1993 PositiveInteger, mioxPleDefaultPeerId InstancePointer } mioxPleMaxCircuits OBJECT-TYPE SYNTAX INTEGER (0..2147483647) ACCESS read-write STATUS mandatory
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -