📄 rfc1291.txt
字号:
Network Working Group V. AggarwalRequest for Comments: 1291 JvNCnet Computer Network December 1991 Mid-Level Networks Potential Technical ServicesStatus of this Memo This RFC provides information for the Internet community. It does not specify an Internet standard. Distribution of this memo is unlimited.Abstract This document proposes a set of technical services that each Internet mid-level network can offer within the mid-level network itself and and to its peer networks. The term "mid-level" is used as a generic term to represent all regional and similar networks, which, due to continuous evolutions and transitions, can no longer be termed "regional" [MAN]. It discusses the pros and cons of offering these services, as well as areas in which mid-level networks can work together. A large portion of the ideas stem from discussions at the IETF Operational Statistics (OPstat), User Connectivity Problems (UCP) and Network Joint Management (NJM) working groups.Table of Contents 1. Introduction.................................................. 2 2. The Generic Model............................................. 2 3. Technical Services............................................ 3 3.1 Domain Name Service......................................... 3 3.2 Public Domain Software...................................... 4 3.3 Network Time................................................ 5 3.4 Network News................................................ 5 3.5 Mailing Lists............................................... 6 4. Experimental Testbeds......................................... 6 5. Network Information Services.................................. 7 6. Network Operations............................................ 7 7. References.................................................... 8 8. Security Considerations....................................... 9 9. Author's Address.............................................. 9 Appendix A Mailing Lists......................................... 10 Appendix B DNS Architecture Strategy............................. 10Aggarwal [Page 1]RFC 1291 Potential Technical Services December 19911. Introduction Over the past few years, the Internet has grown to be a very large entity and its dependability is critical to its users. Furthermore, due to the size and nature of the network, the trend has been to decentralize as many network functions (such as domain name-service, whois, etc.) as possible. Efforts are being made in resource discovery [SHHH90] so that the work of researchers is not lost in the volumes of data that is available on the Internet. A side result of this growth has been the logical structure imposed in the Internet of networks classified by function. Tangible examples in the present state are the NSFnet national backbone, the mid- level/regional networks and campus networks. Each of these can be viewed as hierarchies within an organization, each serving a slightly different function than the other (campus LANs providing access to local resources, mid-level networks providing access to remote resources, etc.). The functions of each hierarchy then become the "services" offered to the organizational layer below it, who in turn depend on these services. This document proposes a set of basic technical services that could be offered by a mid-level network. These services would not only increase the robustness of the mid-level network itself, but would also serve to structure the distribution of resources and services within the Internet. It also proposes a uniform naming convention for locating the hosts offering these services.2. The Generic Model The Internet model that is used as the basis for this document is a graph of mid-level networks connected to one another, each in turn connecting the campus/organization networks and with the end users attached to the campus networks. The model assumes that the mid-level networks constitute the highest level of functional division within the Internet hierarchy described above (this could change in the unforeseen future). With this model in perspective, this document addresses the objectives of minimizing unnecessary traffic within the Internet as well as making the entire structure as robust as possible. The proposed structure is a derived extension of organizational LANs where certain services are offered within the organizational LAN itself, such as nameservice, mail, shared files, single or hierarchical points of contact for problems, etc. The following are the services that are discussed as possible functions of a mid-level network:Aggarwal [Page 2]RFC 1291 Potential Technical Services December 1991 o Technical services o Experimental sites for testing and dissemination of new software and technology to end sites on the network In addition, the following services are mentioned briefly which are discussed in detail elsewhere [SSM91, ML91]: o Network Operation services and the interaction between different mid-level networks in this area o Network Information services3. Technical Services The Internet has grown to be an essential entity because of the services that it offers to its end users. The list of services is long and growing, but some services are more widely used and deployed than others. This section attempts to list and discuss those technical services that could help a mid-level network provide robust and improved services to its end sites.3.1 Domain Name Service According to the NSFnet traffic statistics collected for May 1991, about 7% of the packets on the NSFnet backbone were domain nameserver (DNS) packets. This is a significant amount of traffic, and since most of the other network applications depend on this service, a robust DNS service is critical to any Internet site. Proper location of secondary nameservers so that they are located on different physical networks can increase the reliability of this service to a large extent [MOC87a, MOC87b]. However, the nature of the service requires that the nameservers for the next highest level be available in order to resolve names outline-mode side of one's domain. Thus, for "foo.princeton.edu" to resolve "a.mid.net", the root nameservers which point to mid.net's nameservers have to be reachable. To make the service more reliable, the mid-level network could have at least one nameserver that is able to resolve nameserver queries for all domains directly connected to it. Thus, in the event that the entire mid-level network becomes isolated from the rest of the Internet, applications can still resolve queries for sites directly connected to the mid-level network. Without this functionality, there is no way of resolving a name if the root (or higher level) nameservers become unreachable, even if the query is for a site that is directly connected and reachable.Aggarwal [Page 3]RFC 1291 Potential Technical Services December 1991 Strategies for implementing this architecture are discussed in appendix B. To locate such a "meta-domain" server within a mid-level network, it is proposed that a nameserver entry for "meta-dns" exist within the mid-level network's domain.3.2 Public Domain Software File transfer traffic constituted 23% of the NSFnet backbone traffic for May 1991. Public shareware is a very valuable resource within the Internet and a considerable amount of effort is being put into developing applications to track all available resources in the public archives [SHHH90]. It would be difficult, if not impossible to create an up-to-date repository for every public domain package available on the Internet, simply because of the volume of software and the rate at which new software is being developed every day. Some hosts have gained popularity as good public archives (such as uunet.uu.net, sumex- aim.stanford.edu, wuarchive.wustl.edu) and new developers tend to distribute the software to these sites as distribution points. The economics of maintaining centralized archives is another deterrent to centralization (the UUnet archives at uunet.uu.net take up roughly 1GB of disk storage). Recently however, a number of methods for resource discovery have been developed and are available on the Internet ("ftp-list" file compiled by John Granose - odin@pilot.njin.net, Archie at archie.cs.mcgill.ca and Prospero [NEU]). It is desirable that the mid-level networks be able to provide up- to-date pointers to the distribution hosts for available public software archives. Coordinating the distribution of a static list is difficult (though not impossible) and the use of automated resource discovery mechanisms such as Archie and Prospero is recommended. Under ideal conditions, any software that is popular and significant (e.g., X11, TeX, RFC's) could be archived and distributed within the mid-level network, but measuring "popularity" and "significance" are debatable and left for further evaluation. Furthermore, a nameserver entry for host "swdist" within the domain can provide information on the various available alternatives for software distribution and discovery (static file location, pointers to Archie servers, etc.) -- this nameserver entry can be an alias for a CNAME or a TXT entry.Aggarwal [Page 4]RFC 1291 Potential Technical Services December 19913.3 Network Time An important feature of any computer network providing distributed services is the capability to synchronize the local clocks on the various systems in the network. Ideally, the clocks of all the reference sources would be synchronized to national standards by wire or radio. The importance and immense popularity of this service makes Network Time a very useful potential service that can be provided by a mid-level network. No specific protocol for maintaining time is proposed, and any available protocol that maintains time with reasonable accuracy could be used. Network Time Protocol (NTP) traffic constituted 1% of the NSFnet traffic during May 1991. The traffic might seem insignificant, but there have been instances where a particular stratum-1 timeserver (e.g., one of the stratum-1 servers at University of Delaware) has reached a point of overload with too many different sites trying to peer with it. It is proposed that at least one stratum-1 and two stratum-2 servers be located within a mid-level network (the selection of three servers is based on the NTP standards documentation [MIL89]). Note that the servers can be located at any of the directly connected sites in the network as long as they are publicly accessible. All sites connected to the mid-level network can then coordinate their system times with the servers within the mid-level network itself. Besides increasing the reliability of the timekeeping network, this approach would also limit the load on each timeserver. For locating the network time servers within a domain, nameserver entries for "timekeeper-x" (where x= 1,2,3..) can be made within the domain. The servers are numbered in order of preference and accuracy. Thus, "timekeeper-1.foo.net" would be the primary timekeeper and "timekeeper-2.foo.net" would be additional (possibly secondary) timekeepers within domain "foo.net". If such hosts are not available within a domain, a TXT entry pointing to other recommended time- servers could be provided instead.3.4 Network News Network News (or Usenet News) constituted 14% of the NSFnet traffic in May 1991. Netnews is an expensive service, both in terms of disk and CPU power, as well as network bandwidth consumed. The present structure of Network News consists of several hub sites which are distributed over the Internet. End sites get news feeds from other sites, and an article gets injected into the news stream by sending it to the nearest "upstream" site, which then forwards itAggarwal [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -