📄 rfc2753.txt
字号:
RFC 2753 Framework for Policy-based Admission Control January 2000 reservation request should still be accepted, installed, and forwarded to allow continued normal RSVP processing. In particular, when a PDP sends back an error, it specifies that: 1. the message that generated the admission control request should be processed further as usual, but an error message (or warning) be sent in the other direction and include the policy objects supplied in that error message 2. or, specifies that an error be returned, but the RSVP message should not be forwarded as usual.4.3. Interactions between PEP, LPDP, and PDP at a RSVP router All the details of RSVP message processing and associated interactions between different elements at an RSVP router (PEP, LPDP) and PDP are included in separate documents [3,8]. In the following, a few, salient points related to the framework are listed: * LPDP is optional and may be used for making decisions based on policy elements handled locally. The LPDP, in turn, may have to go to external entities (such as a directory server or an authentication server, etc.) for making its decisions. * PDP is stateful and may make decisions even if no policy objects are received (e.g., make decisions based on information such as flowspecs and session object in the RSVP messages). The PDP may consult other PDPs, but discussion of inter-PDP communication and coordination is outside the scope of this document. * PDP sends asynchronous notifications to PEP whenever necessary to change earlier decisions, generate errors etc. * PDP exports the information useful for usage monitoring and accounting purposes. An example of a useful mechanism for this purpose is a MIB or a relational database. However, this document does not specify any particular mechanism for this purpose and discussion of such mechanisms is out of the scope of this document.4.4. Placement of Policy Elements in a Network By allowing division of labor between an LPDP and a PDP, the policy control architecture allows staged deployment by enabling routers of varying degrees of sophistication, as far as policy control is concerned, to communicate with policy servers. Figure 4 depicts an example set of nodes belonging to three different administrative domains (AD) (Each AD could correspond to a different serviceYavatkar, et al. Informational [Page 11]RFC 2753 Framework for Policy-based Admission Control January 2000 provider in this case). Nodes A, B and C belong to administrative domain AD-1, advised by PDP PS-1, while D and E belong to AD-2 and AD-3, respectively. E communicates with PDP PS-2. In general, it is expected that there will be at least one PDP per administrative domain. Policy capable network nodes could range from very unsophisticated, such as E, which have no LPDP, and thus have to rely on an external PDP for every policy processing operation, to self-sufficient, such as D, which essentially encompasses both an LPDP and a PDP locally, at the router. AD-1 AD-2 AD-3 ________________/\_______________ __/\___ __/\___ { } { } { } A B C D E +-------+ +-----+ +-------+ +-------+ +-------+ | RSVP | | RSVP| | RSVP | | RSVP | | RSVP |+----+ |-------| |-----| |-------| |-------| |-------|| S1 |--| P | L |--| |----| P | L |----| P | P |----| P | +----++----+ | E | D | +-----+ | E | D | | E | D | | E |-| R1 | | P | P | | P | P | | P | P | | P | +----+ +-------+ +-------+ +-------+ +-------+ ^ ^ ^ | | | | | | | | +-------+ | | | PDP | | +------+ | |-------| +-------->| PDP |<------+ | | |------| +-------+ | | PS-2 +------+ PS-1 Figure 4: Placement of Policy Elements in an internet5. Example Policies, Scenarios, and Policy Support In the following, we present examples of desired policies and scenarios requiring policy control that the policy control framework should be able to support. In some cases, possible approach(es) for achieving the desired goals are also outlined with a list of open issues to be resolved.5.1. Admission control policies based on factors such as Time-of-Day, User Identity, or credentials.Yavatkar, et al. Informational [Page 12]RFC 2753 Framework for Policy-based Admission Control January 2000 Policy control must be able to express and enforce rules with temporal dependencies. For example, a group of users might be allowed to make reservations at certain levels only during off-peak hours. In addition, the policy control must also support policies that take into account identity or credentials of users requesting a particular service or resource. For example, an RSVP reservation request may be denied or accepted based on the credentials or identity supplied in the request.5.2. Bilateral agreements between service providers Until recently, usage agreements between service providers for traffic crossing their boundaries have been quite simple. For example, two ISPs might agree to accept all traffic from each other, often without performing any accounting or billing for the "foreign" traffic carried. However, with the availability of QoS mechanisms based on Integrated and Differentiated Services, traffic differentiation and quality of service guarantees are being phased into the Internet. As ISPs start to sell their customers different grades of service and can differentiate among different sources of traffic, they will also seek mechanisms for charging each other for traffic (and reservations) transiting their networks. One additional incentive in establishing such mechanisms is the potential asymmetry in terms of the customer base that different providers will exhibit: ISPs focused on servicing corporate traffic are likely to experience much higher demand for reserved services than those that service the consumer market. Lack of sophisticated accounting schemes for inter- ISP traffic could lead to inefficient allocation of costs among different service providers. Bilateral agreements could fall into two broad categories; local or global. Due to the complexity of the problem, it is expected that initially only the former will be deployed. In these, providers which manage a network cloud or administrative domain contract with their closest point of contact (neighbor) to establish ground rules and arrangements for access control and accounting. These contracts are mostly local and do not rely on global agreements; consequently, a policy node maintains information about its neighboring nodes only. Referring to Figure 4, this model implies that provider AD-1 has established arrangements with AD-2, but not with AD-3, for usage of each other's network. Provider AD-2, in turn, has in place agreements with AD-3 and so on. Thus, when forwarding a reservation request to AD-2, provider AD-2 will charge AD-1 for use of all resources beyond AD-1's network. This information is obtained by recursively applying the bilateral agreements at every boundary between (neighboring) providers, until the recipient of the reservation request is reached. To implement this scheme under the policy control architecture, boundary nodes have to add an appropriate policy object to the RSVPYavatkar, et al. Informational [Page 13]RFC 2753 Framework for Policy-based Admission Control January 2000 message before forwarding it to a neighboring provider's network. This policy object will contain information such as the identity of the provider that generated them and the equivalent of an account number where charges can be accumulated. Since agreements only hold among neighboring nodes, policy objects have to be rewritten as RSVP messages cross the boundaries of administrative domains or provider's networks.5.3. Priority based admission control policies In many settings, it is useful to distinguish between reservations on the basis of some level of "importance". For example, this can be useful to avoid that the first reservation being granted the use of some resources, be able to hog those resources for some indefinite period of time. Similarly, this may be useful to allow emergency calls to go through even during periods of congestion. Such functionality can be supported by associating priorities with reservation requests, and conveying this priority information together with other policy information. In its basic form, the priority associated with a reservation directly determines a reservation's rights to the resources it requests. For example, assuming that priorities are expressed through integers in the range 0 to 32 with 32 being the highest priority, a reservation of priority, say, 10, will always be accepted, if the amount of resources held by lower priority reservations is sufficient to satisfy its requirements. In other words, in case there are not enough free resources (bandwidth, buffers, etc.) at a node to accommodate the priority 10 request, the node will attempt to free up the necessary resources by preempting existing lower priority reservations. There are a number of requirements associated with the support of priority and their proper operation. First, traffic control in the router needs to be aware of priorities, i.e., classify existing reservations according to their priority, so that it is capable of determining how many and which ones to preempt, when required to accommodate a higher priority reservation request. Second, it is important that preemption be made consistently at different nodes, in order to avoid transient instabilities. Third and possibly most important, merging of priorities needs to be carefully architected and its impact clearly understood as part of the associated policy definition. Of the three above requirements, merging of priority information is the more complex and deserves additional discussions. The complexity of merging priority information arises from the fact that this merging is to be performed in addition to the merging of reservationYavatkar, et al. Informational [Page 14]RFC 2753 Framework for Policy-based Admission Control January 2000 information. When reservation (FLOWSPEC) information is identical, i.e., homogeneous reservations, merging only needs to consider priority information, and the simple rule of keeping the highest priority provides an adequate answer. However, in the case of heterogeneous reservations, the *two-dimensional nature* of the (FLOWSPEC, priority) pair makes their ordering, and therefore merging, difficult. A description of the handling of different cases of RSVP priority objects is presented in [7].5.4. Pre-paid calling card or Tokens A model of increasing popularity in the telephone network is that of the pre-paid calling card. This concept could also be applied to the Internet; users purchase "tokens" which can be redeemed at a later time for access to network services. When a user makes a reservation request through, say, an RSVP RESV message, the user supplies a unique identification number of the "token", embedded in a policy object. Processing of this object at policy capable routers results in decrementing the value, or number of remaining units of service, of this token. Referring to Figure 4, suppose receiver R1 in the administrative domain AD3 wants to request a reservation for a service originating in AD1. R1 generates a policy data object of type PD(prc, CID), where "prc" denotes pre-paid card and CID is the card identification number. Along with other policy objects carried in the RESV message, this object is received by node E, which forwards it to its PEP, PEP_E, which, in turn, contacts PDP PS-3. PS-3 either maintains locally, or has remote access to, a database of pre-paid card numbers. If the amount of remaining credit in CID is sufficient, the PDP accepts the reservation and the policy object is returned to PEP_E. Two issues have to be resolved here: * What is the scope of these charges? * When are charges (in the form of decrementing the remaining credit) first applied? The answer to the first question is related to the bilateral agreement model in place. If, on the one hand, provider AD-3 has established agreements with both AD-2 and AD-1, it could charge for the cost of the complete reservation up to sender S1. In this case PS-2 removes the PD(prc,CID) object from the outgoing RESV message. On the other hand, if AD-3 has no bilateral agreements in place, it will simply charge CID for the cost of the reservation within AD-3 and then forward PD(prc,CID) in the outgoing RESV message. Subsequent PDPs in other administrative domains will charge CID for theirYavatkar, et al. Informational [Page 15]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -