📄 rfc1388.txt
字号:
Network Working Group G. MalkinRequest for Comments: 1388 Xylogics, Inc.Updates: RFC 1058 January 1993 RIP Version 2 Carrying Additional InformationStatus of this Memo This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This document specifies an extension of the Routing Information Protocol (RIP), as defined in [1], to expand the amount of useful information carried in RIP packets and to add a measure of security. A companion document will define the SNMP MIB objects for RIP-2 [2].Acknowledgements I would like to thank the following for their contributions to this document: Fred Baker, Noel Chiappa and Vince Fuller. This memo is a product of the RIP-2 Working Group of the Internet Engineering Task Force (IETF).Table of Contents 1. Justification . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Current RIP . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Protocol Extensions . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Routing Domain . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Route Tag . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Subnet Mask . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.5 Next Hop . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.6 Multicasting . . . . . . . . . . . . . . . . . . . . . . . . 5 4. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1 Compatibility Switch . . . . . . . . . . . . . . . . . . . . 5 4.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . 6 4.3 Larger Infinity . . . . . . . . . . . . . . . . . . . . . . . 6 4.4 Addressless Links . . . . . . . . . . . . . . . . . . . . . . 6 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Malkin [Page 1]RFC 1388 RIP Version 2 January 1993 Security Considerations . . . . . . . . . . . . . . . . . . . . . . 7 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 71. Justification With the advent of OSPF and IS-IS, there are those who believe that RIP is obsolete. While it is true that the newer IGP routing protocols are far superior to RIP, RIP does have some advantages. Primarily, in a small network, RIP has very little overhead in terms of bandwidth used and configuration and management time. RIP is also very easy to implement, especially in relation to the newer IGPs. Additionally, there are many, many more RIP implementations in the field than OSPF and IS-IS combined. It is likely to remain that way for some years yet. Given that RIP will be useful in many environments for some period of time, it is reasonable to increase RIP's usefulness. This is especially true since the gain is far greater than the expense of the change.2. Current RIP The current RIP packet contains the minimal amount of information necessary for routers to route packets through a network. It also contains a large amount of unused space, owing to its origins. The current RIP protocol does not consider autonomous systems and IGP/EGP interactions, subnetting, and authentication since implementations of these postdate RIP. The lack of subnet masks is a particularly serious problem for routers since they need a subnet mask to know how to determine a route. If a RIP route is a network route (all non-network bits 0), the subnet mask equals the network mask. However, if some of the non-network bits are set, the router cannot determine the subnet mask. Worse still, the router cannot determine if the RIP route is a subnet route or a host route. Currently, some routers simply choose the subnet mask of the interface over which the route was learned and determine the route type from that.3. Protocol Extensions This document does not change the RIP protocol per se. Rather, it provides extensions to the datagram format which allows routers to share important additional information.Malkin [Page 2]RFC 1388 RIP Version 2 January 1993 The new RIP datagram format is: 0 1 2 3 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Command (1) | Version (1) | Routing Domain (2) | +---------------+---------------+-------------------------------+ | Address Family Identifier (2) | Route Tag (2) | +-------------------------------+-------------------------------+ | IP Address (4) | +---------------------------------------------------------------+ | Subnet Mask (4) | +---------------------------------------------------------------+ | Next Hop (4) | +---------------------------------------------------------------+ | Metric (4) | +---------------------------------------------------------------+ The Command, Address Family Identifier (AFI), IP Address, and Metric all have the meanings defined in RFC 1058. The Version field will specify version number 2 for RIP datagrams which use authentication or carry information in any of the newly defined fields. All fields are coded in IP network byte order (big-endian).3.1 Authentication Since authentication is a per packet function, and since there is only one 2-byte field available in the packet header, and since any reasonable authentication scheme will require more than two bytes, the authentication scheme for RIP version 2 will use the space of an entire RIP entry. If the Address Family Identifier of the first (and only the first) entry in the packet is 0xFFFF, then the remainder of the entry contains the authentication. This means that there can be, at most, 24 RIP entries in the remainder of the packet. If authentication is not in use, then no entries in the packet should have an Address Family Identifier of 0xFFFF. A RIP packet which contains an authentication entry would have the following format: 0 1 2 3 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Command (1) | Version (1) | Routing Domain (2) | +---------------+---------------+-------------------------------+ | 0xFFFF | Authentication Type (2) | +-------------------------------+-------------------------------+ ~ Authentication (16) ~ +---------------------------------------------------------------+Malkin [Page 3]RFC 1388 RIP Version 2 January 1993 Currently, the only Authentication Type is simple password and it is type 2. The remaining 16 bytes contain the plain text password. If the password is under 16 bytes, it must be left-justified and padded to the right with nulls (0x00).3.2 Routing Domain The Routing Domain (RD) number is the number of the routing process to which this update belongs. This field is used to associate the routing update to a specific routing process on the receiving router. The RD is needed to allow multiple, independent RIP "clouds" to co- exist on the same physical wire. This gives administrators the ability to run multiple, possibly parallel, instances of RIP in order to implement simple policy. This means that a router operating within one routing domain, or a set of routing domains, should ignore RIP packets which belong to another routing domain. RD 0 is the default routing domain.3.3 Route Tag The Route Tag (RT) field exists as a support for EGPs. The contents and use of this field are outside the scope of this protocol. However, it is expected that the field will be used to carry Autonomous System numbers for EGP and BGP. Any RIP system which
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -