📄 rfc1688.txt
字号:
Network Working Group W. SimpsonRequest for Comments: 1688 DaydreamerCategory: Informational August 1994 IPng Mobility ConsiderationsStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract This document was submitted to the IPng Area in response to RFC 1550. Publication of this document does not imply acceptance by the IPng Area of any ideas expressed within. Comments should be submitted to the big-internet@munnari.oz.au mailing list. This RFC specifies criteria related to mobility for consideration in design and selection of the Next Generation of IP.Table of Contents 1. Introduction .......................................... 2 2. Addressing ............................................ 2 2.1 Ownership ....................................... 2 2.2 Topology ........................................ 3 2.3 Manufacturer .................................... 3 2.4 Numbering ....................................... 3 2.5 Configuration ................................... 3 3. Communication ......................................... 3 3.1 Topological Changes ............................. 4 3.2 Routing Updates ................................. 4 3.3 Path Optimization ............................... 5 3.4 At Home ......................................... 5 3.5 Away From Home .................................. 5 4. Security .............................................. 5 4.1 Authentication .................................. 5 4.2 Anonymity ....................................... 6 4.3 Location Privacy ................................ 6 4.4 Content Privacy ................................. 6 5. Bandwidth ............................................. 6 5.1 Administrative Messages ......................... 7 5.2 Response Time ................................... 7 5.3 Header Prediction ............................... 8 6. Processing ............................................ 8 6.1 Fixed Location .................................. 8Simpson [Page 1]RFC 1688 IPng Mobility August 1994 6.2 Simple Fields ................................... 9 6.3 Simple Tests .................................... 9 6.4 Type, Length, Value ............................. 9 Acknowledgements ............................................. 9 Security Considerations ...................................... 9 Author's Address ............................................. 91. Introduction Current versions of the Internet Protocol make an implicit assumption that a node's point of attachment remains fixed. Datagrams are sent to a node based on the location information contained in the node's IP address. If a node moves while keeping its IP address unchanged, its IP network number will not reflect its new point of attachment. The routing protocols will not be able to route datagrams to it correctly. A number of considerations arise for routing these datagrams to a Mobile Node.2. Addressing Each Mobile Node must have at least one Home-Address which identifies it to other nodes. This Home-Address must be globally unique.2.1. Ownership The presence of ownership information in the Home-Address would be beneficial. A Mobile Node will be assigned a Home-Address by the organization that owns the machine, and will be able to use that Home-Address regardless of the current point of attachment. The ownership information must be organized in such a fashion to facilitate "inverse" lookup in the Domain Name Service, and other future services. Ownership information could be used by other nodes to ascertain the current topological location of the Mobile Node. Ownership information could also be used for generation of accounting records.Simpson [Page 2]RFC 1688 IPng Mobility August 19942.2. Topology There is no requirement that the Home-Address contain topological information. Indeed, by the very nature of mobility, any such topological information is irrelevant. Topological information in the Home-Address must not hinder mobility, whether by prevention of relocation, or by wasting bandwidth or processing efficiency.2.3. Manufacturer There is no requirement that the Home-Address contain manufacturer information. Manufacturer information in the Home-Address must not hinder mobility, whether by prevention of relocation, or by wasting bandwidth or processing efficiency.2.4. Numbering The number of mobile nodes is expected to be constrained by the population of users within the lifetime of the IPng protocol. The maximum world-wide sustainable population is estimated as 16e9, although during the lifetime of IPng the population is not expected to exceed 8e9. Each user is assumed to be mobile, and to have a maximum combined personal mobile and home network(s) on the order of 4e3 nodes. The expectation is that only 46 bits will be needed to densely number all mobile and home nodes. The size of addressing elements is also constrained by bandwidth efficiency and processing efficiency, as described later.2.5. Configuration Since the typical user would be unlikely to be aware of or willing and able to maintain 4e3 nodes, the assignment of Home-Addresses must be automatically configurable. Registration of the nodes must be dynamic and transparent to the user, both at home and away from home.3. Communication A Mobile Node must continue to be capable of communicating directly with other nodes which do not implement mobility functions.Simpson [Page 3]RFC 1688 IPng Mobility August 1994 No protocol enhancements are required in hosts or routers that are not serving any of the mobility functions. Similarly, no additional protocols are needed by a router (that is not acting as a Home Agent or a Foreign Agent) to route datagrams to or from a Mobile Node. A Mobile Node using its Home-Address must be able to communicate with other nodes after having been disconnected from the Internet, and then reconnected at a different point of attachment. A Mobile Node using its Home-Address must be able to communicate with other nodes while roaming between different points of attachment, without loss of transport connections.3.1. Topological Changes In order that transport connections be maintained while roaming, topological changes must not affect transport connections. For correspondent nodes which do not implement mobility functions, topological changes should not be communicated to the correspondent. For correspondent nodes which implement mobility functions, the correspondent should be capable of determining topological changes. Topological change information must be capable of insertion and removal by routers in the datagram path, as well as by the correspondent and Mobile Node.3.2. Routing Updates Mobile Nodes are expected to be able to change their point of attachment no more frequently than once per second. Changes in topology which occur more frequently must be handled at the link layer transparently to the internetwork layer. It is further noted that engineering margins may require the link layer to handle all changes at a frequency in the neighborhood of 10 seconds. Changes in topology which occur less frequently must be immediately reflected in the mobility updates. This may preclude the use of the Domain Name Service as the repository of mobility topological information. It must be noted that global routing updates do not operate at this frequency. As old topological information may be obsoleted faster than global routing updates, access to the repository of mobility topological information must be independent of prior topological information.Simpson [Page 4]RFC 1688 IPng Mobility August 1994 The mobility specific repository should use ownership information in the Home-Address for access to the repository.3.3. Path Optimization Optimization of the path from a correspondent to a mobile node is not required. However, such optimization is desirable. For correspondent nodes which implement mobility functions, the correspondent should be capable of determining the optimal path. The optimization mechanism is also constrained by security, bandwidth efficiency and processing efficiency, as described later.3.4. At Home Mobile Nodes do not require special "virtual" home network addresses. The assumption that extra addresses or multiple routers are available is unwarranted in small networks. Mobile Nodes must operate without special assistance from routers in order to communicate directly with other nodes on the home subnetwork link.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -