📄 rfc1978.txt
字号:
len--; for (i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) { if (flags & bitmask) { *dest = GuessTable[Hash]; /* Guess correct */ } else { if (!len) break; /* we seem to be really done -- cabo */ GuessTable[Hash] = *source; /* Guess wrong */ *dest = *source++; /* Read from source */ len--; } HASH(*dest++); } } *lenp = len; return(dest - orgdest); } #define SIZ1 8192 static void compress_file(f) FILE *f; { char bufp[SIZ1]; char bufc[SIZ1/8*9+9];Rand Informational [Page 5]RFC 1978 Predictor Protocol August 1996 int len1, len2; while ((len1 = fread(bufp, 1, SIZ1, f)) > 0) { len2 = compress((unsigned char *)bufp, (unsigned char *)bufc, len1); (void) fwrite(bufc, 1, len2, stdout); } } static void decompress_file(f) FILE *f; { char bufp[SIZ1+9]; char bufc[SIZ1*9+9]; int len1, len2, len3; len1 = 0; while ((len3 = fread(bufp+len1, 1, SIZ1, f)) > 0) { len1 += len3; len3 = len1; len2 = decompress((unsigned char *)bufp, (unsigned char *)bufc, &len1, 0); (void) fwrite(bufc, 1, len2, stdout); (void) memcpy(bufp, bufp+len3-len1, len1); } len2 = decompress((unsigned char *)bufp, (unsigned char *)bufc, &len1, 1); (void) fwrite(bufc, 1, len2, stdout); } int main(ac, av) int ac; char** av; { char **p = av+1; int dflag = 0; for (; --ac > 0; p++) { if (!strcmp(*p, "-d")) dflag = 1; else if (!strcmp(*p, "-")) (dflag?decompress_file:compress_file)(stdin); else { FILE *f = fopen(*p, "r"); if (!f) { perror(*p); exit(1); } (dflag?decompress_file:compress_file)(f);Rand Informational [Page 6]RFC 1978 Predictor Protocol August 1996 (void) fclose(f); } } return(0); }3.2. Encapsulation for Predictor type 1 The correct encapsulation for type 1 compression is the protocol type, 1 bit indicating if the data is compressed or not, 15 bits of the uncompressed data length in octets, compressed data, and uncompressed CRC-16 of the two octets of unsigned length in network byte order, followed by the original, uncompressed data packet. 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CCP Protocol Identifier | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |*| Uncompressed length (octets)| * is compressed flag +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1 means data is compressed | Compressed data... | 0 means data is not compressed +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CRC - 16 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The CCP Protocol Identifier that starts the packet is always 0xfd. If PPP Protocol field compression has not be negotiated, it MUST be a 16-bit field. The Compressed data is the Protocol Identifier and the Info fields of the original PPP packet described in [1], but not the Address, Control, FCS, or Flag. The CCP Protocol field MAY be compressed as described in [1], regardless of whether the Protocol field of the CCP Protocol Identifier is compressed or whether PPP Protocol field compression has been negotiated. It is not required that any of the fields land on an even word boundary - the compressed data may be of any length. If during the decode procedure, the CRC-16 does not match the decoded frame, it means that the compress or decompress process has become desyncronized. This will happen as a result of a frame being lost in transit if LAPB is not used. In this case, a new configure-request must be sent, and the CCP will drop out of the open state. Upon receipt of the configure-ack, the predictor tables are cleared to zero, and compression can be resumed without data loss.Rand Informational [Page 7]RFC 1978 Predictor Protocol August 19963.3. Encapsulation for Predictor type 2 The correct encapsulation for type 2 compression is the protocol type, followed by the data stream. Within the data stream is the current frame length (uncompressed), compressed data, and uncompressed CRC-16 of the two octets of unsigned length in network byte order, followed by the original, uncompressed data. The data stream may be broken at any convenient place for encapsulation purposes. With type 2 encapsulation, LAPB is almost essential for correct delivery. 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CCP Protocol Identifier | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |*| Uncompressed length (octets)| * is compressed flag +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1 means data is compressed | Compressed data... | 0 means data is not compressed +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | CRC-16 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |*| Uncompressed length (octets)| * is compressed flag +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ... The CCP Protocol Identifier that starts the packet is always 0xfd. If PPP Protocol field compression has not be negotiated, it MUST be a 16-bit field. The Compressed data is the Protocol Identifier and the Info fields of the original PPP packet described in [1], but not the Address, Control, FCS, or Flag. The CCP Protocol field MAY be compressed as described in [1], regardless of whether the Protocol field of the CCP Protocol Identifier is compressed or whether PPP Protocol field compression It is not required that any field land on an even word boundary - the compressed data may be of any length. If during the decode procedure, the CRC-16 does not match the decoded frame, it means that the compress or decompress process has become desyncronized. This will happen as a result of a frame being lost in transit if LAPB is not used. In this case, a new configure-request must be sent, and the CCP will drop out of the open state. Upon receipt of the configure-ack, the predictor tables are cleared to zero, and compression can be resumed without data loss.Rand Informational [Page 8]RFC 1978 Predictor Protocol August 19964. Configuration Option Format There are no options for Predictor type one or two.Security Considerations Security issues are not discussed in this memo.References [1] Simpson, W., "The Point-to-Point Protocol", STD 51, RFC 1661, July 1994. [2] Rand, D., "The PPP Compression Control Protocol (CCP)", RFC 1962, June 1996. [3] Rand, D., "PPP Reliable Transmission", RFC 1663, July 1994.Acknowledgments The predictor algorithm was originally implemented by Timo Raita, at the ACM SIG Conference, New Orleans, 1987. Bill Simpson helped with the document formatting.Chair's Address The working group can be contacted via the current chair: Karl Fox Ascend Communications 3518 Riverside Drive, Suite 101 Columbus, Ohio 43221 EMail: karl@ascend.comAuthor's Address Questions about this memo can also be directed to: Dave Rand Novell, Inc. 2180 Fortune Drive San Jose, CA 95131 +1 408 321-1259 EMail: dave_rand@novell.comRand Informational [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -