📄 rfc2174.txt
字号:
Network Working Group K. MurakamiRequest for Comments: 2174 M. MaruyamaCategory: Informational NTT Laboratories June 1997 A MAPOS version 1 Extension - Switch-Switch ProtocolStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Authors' Note This memo documents a MAPOS (Multiple Access Protocol over SONET/SDH) version 1 extension, Switch Switch Protocol which provides dynamic routing for unicast, broadcast, and multicast. This document is NOT the product of an IETF working group nor is it a standards track document. It has not necessarily benefited from the widespread and in depth community review that standards track documents receive.Abstract This document describes a MAPOS version 1 extension, SSP (Switch Switch Protocol). MAPOS is a multiple access protocol for transmission of network-protocol packets, encapsulated in High-Level Data Link Control (HDLC) frames, over SONET/SDH. In MAPOS network, a SONET switch provides the multiple access capability to end nodes. SSP is a protocol of Distance Vector family and provides unicast and broadcast/multicast routing for multiple SONET switch environment.1. Introduction This document describes an extension to MAPOS version 1, Switch Switch Protocol, for routing both unicast and broadcast/multicast frames. MAPOS[1], Multiple Access Protocol over SONET (Synchronous Optical Network) / SDH (Synchronous Digital Hierarchy) [2][3][4][5], is a link layer protocol for transmission of HDLC frames over SONET/SDH. A SONET switch provides the multiple access capability to each node. SSP is a dynamic routing protocol designed for an environment where a MAPOS network segment spans over multiple switches. It is a protocol of Distance Vector family. It provides both unicast and broadcast/multicast routing. First, this document describes the outline of SSP. Next, it explains unicast and broadcast/multicast routing algorithms. Then, it describes the SSP protocol in detail.Murakami & Maruyama Informational [Page 1]RFC 2174 MAPOS June 19972. Constraints in Designing SSP SSP is a unified routing protocol supporting both unicast and broadcast/multicast. The former and the latter are based on the Distance Vector [6][7] and the spanning tree[8] algorithm, respectively. In MAPOS version 1, a small number of switches is assumed in a segment. Thus, unlike DVMRP(Distance Vector Multicast Routing Protocol)[8], TRPB(Truncated Reverse Path Broadcasting) is not supported for simplicity. This means that multicast frames are treated just the same as broadcast frames and are delivered to every node. In MAPOS version 1, there are two constraints regarding design of the broadcast/multicast routing algorithm; (1) there is no source address field in MAPOS HDLC frames (2) there is no TTL(Time To Live) field in MAPOS HDLC frames to prevent forwarding loop. To cope with the first issue, VRPB(Virtual Reverse Path Broadcast) algorithm is introduced. In VRPB, all broadcast and multicast frames are assumed to be generated by a node under a specific switch called VSS(Virtual Source Switch). VSS is the switch which has the smallest switch number in a MAPOS network. Each switch determine its place in the spanning tree rooted from VSS independently. Whenever a switch receives a broadcast/multicast frame, it forwards the frame to all upstream and downstream switches except for the one which has sent the frame to the local switch. To cope with the second issue, the forward delay timer is introduced. Even if a switch finds a new VSS, it suspends forwarding for a time period. This timer ensures that all the switches have a consistent routing information and that they are synchronized after a topology change.3. Unicast Routing in SSP This section describes the address structure of MAPOS version 1 and the SSP unicast routing based on it.Murakami & Maruyama Informational [Page 2]RFC 2174 MAPOS June 19973.1 Address Structure of MAPOS version 1 In a multiple switch environment, a node address consists of the switch number and the port number to which the node is connected. As shown in Figure 1, the address length is 8 bits and the LSB is always 1, which indicates the end of the address field. A MSB of 0 indicates a unicast address. The switch and the port number fields are variable-length. In this document, a unicast address is represented as "0 <switch-number> <port number>". Note that a port number includes EA bit. MSB of 1 indicates multicast or broadcast. In the case of broadcast, the address field contains all 1s (0xff in hex). In the case of multicast, the remaining bits indicate a group address. The switch number field is variable-length. A multicast address is represented as "1 <group address>". Switch Number(variable length) | | +--- Port Number | | V V |<->|<------->| +-------------+-+ | | | | | | | | | | | |1| +-+-----------+-+ ^ ^ | | | +------- EA bit (always 1) | 1 : broadcast, multicast 0 : unicast Figure 1 Address Format Figure 2 shows an example of a SONET LAN that consists of three switches. In this configuration, two bits of a node address are used to indicate the switch number. Node N1 is connected to port 0x03(000011 in binary) of the switch S2 numbered 0x2. Thus, the node address is 01000011 in binary. Node N4 has an address 01101001 in binary since the connected switch number is 0x3 and the port number is 0x09.Murakami & Maruyama Informational [Page 3]RFC 2174 MAPOS June 1997 01000011 +------+ | node | | N1 | +------+ 01000101 |0x03 |0x03 00101001 +------+ +---+----+ +---+----+ +------+ | node +-----+ SONET +---------+ SONET +------+ node | | N2 | 0x05| Switch |0x09 0x05| Switch |0x09 | N3 | +------+ | S2 | | S1 | +------+ | (0x2) | | (0x1) | +---+----+ +---+----+ |0x07 |0x07 | | | |0x03 01101001 | +---+----+ +------+ +--------------+ SONET +-----+ node | 0x05| Switch |0x09 | N4 | | S3 | +------+ | (0x3) | +---+----+ |0x07 Figure 2 Multiple SONET Switch Environment3.2 Forwarding Unicast Frames Unicast frames are forwarded along the shortest path. For example, a frame from node N4 destined to N1 is forwarded by switch S3 and S2. These SONET switches forwards an HDLC frame based on the destination switch number contained in the destination address. Each switch keeps a routing table with entries for possible destination switches. An entry contains the subnet mask, the next hop to the adjacent switch along the shortest path to the destination, the metric measuring the total distance to the destination, and other parameters associated with the entry such as timers. For example, the routing table in switch S1 will be as shown in Table 1. The metric value 1 means that the destination switch is an adjacent switch. The value 16 means that it is unreachable. Although the values between 17 and 31 also mean unreachable, they are special values utilized for split horizon with poisoned reverse [8].Murakami & Maruyama Informational [Page 4]RFC 2174 MAPOS June 1997 +-------------------------+----------+--------+------------+ | destination | subnet | next hop | metric | other | | switch | mask | port | | parameters | +-------------+-----------+----------+--------+------------+ | 01000000 | 11100000 | 00000101 | 1 | | +-------------+-----------+----------+--------+------------+ | 01100000 | 11100000 | 00000111 | 1 | | +-------------+-----------+----------+--------+------------+ Table 1 An Example of a Routing Table When a switch receives a unicast frame, it extracts the switch number from the destination address. If it equals to the local switch number, the frame is sent to the local node through the port specified in the destination address. Otherwise, the switch looks up its routing table for a matching destination switch number by masking the destination address with the corresponding subnet mask. If a matching entry is found, the frame is sent to an adjacent switch through the next hop port in the entry. Otherwise, it is silently discarded or sent to the control processor for its error processing.3.4 Protocol Overview This subsection describes an overview of the unicast routing protocol and its algorithm.3.4.1 Route Exchange SSP is a distance vector protocol to establish and maintain the routing table. In SSP, each switch sends a routing update message to every adjacent switches every FULL_UPDATE_TIME (10 seconds by default). The update message is a copy of the routing table, that is, routes. When a switch receives an update message from an adjacent switch through a port, it adds the cost associated with the port, usually 1, to every metric value in the message. The result is a set of new metrics from the receiving switch to the destination switches. Next, it compares the new metrics with those of the corresponding entries in the existing routing table. A smaller metric means a better route. Thus, if the new metric is smaller than the existing one, the entry is updated with the new metric and next hop. The next hop is the port from which the update message was received. Otherwise, the entry is left unchanged. If the existing next hop is the same as the new one, the metric is updated regardless of the metric value. If no corresponding route is found, a new route entry is created.Murakami & Maruyama Informational [Page 5]RFC 2174 MAPOS June 19973.4.2 Route Expiration Assume a route to R is advertised by a neighboring switch S. If no update message has been received from switch S for the period FULL_UPDATE_TIME * 3 (30 seconds by default) or the route is advertised with metric 16 by switch S, the route to R is marked as unreachable by setting its metric to 16. In other words, the route to R is kept advertised even if the route is not refreshed up-to 30 seconds. To process this, each routing table entry has an EXPIRATION_TIMER (30 seconds by default, that is, FULL_UPDATE_TIME *3). If another switch advertises a route to R, it replaces the unreachable route. Even if a route is marked unreachable, the entry is kept in the routing table for the period of FULL_UPDATE_TIME * 3. This enables the switch to notify its neighbors of the unreachable route by sending update messages with metric 16. To process this, each routing table entry has a garbage collection timer GC_TIMER (30 seconds by default). The entry is deleted on expiration of the timer. Figure 3 shows this transition. The Last Update Expiration Garbage Collection | | |
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -