📄 rfc1827.txt
字号:
RFC 1827 Encapsulating Security Payload August 1995 receiving process and the security level associated with this Security Association. If those mandatory access controls fail, then the packet SHOULD be discarded and the failure SHOULD be logged using implementation-specific procedures.4.2 ESP in Transport-mode In Transport-mode ESP, the ESP header follows the end-to-end headers (e.g., Authentication Header) and immediately precedes a transport- layer (e.g., UDP, TCP, ICMP) header. The sender takes the original transport-layer (e.g., UDP, TCP, ICMP) frame, encapsulates it into the ESP, uses at least the sending userid and Destination Address to locate the appropriate Security Association, and then applies the appropriate encryption transform. If host-oriented keying is in use, then all sending userids on a given system will have the same Security Association for a given Destination Address. If no key has been established, then the key management mechanism is used to establish a encryption key for this communications session prior to the encryption. The (now encrypted) ESP is then encapsulated as the last payload of a cleartext IP datagram. The receiver processes the cleartext IP header and cleartext optional IP headers (if any) and temporarily stores pertinent information (e.g., source and destination addresses, Flow ID, Routing Header). It then decrypts the ESP using the session key that has been established for this traffic, using the combination of the destination address and the packet's Security Association Identifier (SPI) to locate the correct key. If no key exists for this session or the attempt to decrypt fails, the encrypted ESP MUST be discarded and the failure MUST be recorded in the system log or audit log. If such a failure occurs, the recorded log data SHOULD include the SPI value, date/time received, clear-text Sending Address, clear-text Destination Address, and the Flow ID. The log data MAY also include other information about the failed packet. If decryption does not work properly for some reason, then the resulting data will not be parsable by the implementation's protocol engine. Hence, failed decryption is generally detectable. If decryption succeeds, the original transport-layer (e.g., UDP, TCP, ICMP) frame is removed from the (now decrypted) ESP. The information from the cleartext IP header and the now decrypted transport-layer header is jointly used to determine which application the data should be sent to. The data is then sent along to the appropriate application as normally per IP protocol specification. In the case of a system claiming to provide multilevel security (for example, aAtkinson Standards Track [Page 7]RFC 1827 Encapsulating Security Payload August 1995 B1 or Compartmented Mode Workstation), additional Mandatory Access Controls MUST be applied based on the security level of the receiving process and the security level of the received packet's Security Association.4.3. Authentication Some transforms provide authentication as well as confidentiality and integrity. When such a transform is not used, then the Authentication Header might be used in conjunction with the Encapsulating Security Payload. There are two different approaches to using the Authentication Header with ESP, depending on which data is to be authenticated. The location of the Authentication Header makes it clear which set of data is being authenticated. In the first usage, the entire received datagram is authenticated, including both the encrypted and unencrypted portions, while only the data sent after the ESP Header is confidential. In this usage, the sender first applies ESP to the data being protected. Then the other plaintext IP headers are prepended to the ESP header and its now encrypted data. Finally, the IP Authentication Header is calculated over the resulting datagram according to the normal method. Upon receipt, the receiver first verifies the authenticity of the entire datagram using the normal IP Authentication Header process. Then if authentication succeeds, decryption using the normal IP ESP process occurs. If decryption is successful, then the resulting data is passed up to the upper layer. If the authentication process were to be applied only to the data protected by Tunnel-mode ESP, then the IP Authentication Header would be placed normally within that protected datagram. However, if one were using Transport-mode ESP, then the IP Authentication Header would be placed before the ESP header and would be calculated across the entire IP datagram. If the Authentication Header is encapsulated within a Tunnel-mode ESP header, and both headers have specific security classification levels associated with them, and the two security classification levels are not identical, then an error has occurred. That error SHOULD be recorded in the system log or audit log using the procedures described previously. It is not necessarily an error for an Authentication Header located outside of the ESP header to have a different security classification level than the ESP header's classification level. This might be valid because the cleartext IP headers might have a different classification level after the data has been encrypted using ESP.Atkinson Standards Track [Page 8]RFC 1827 Encapsulating Security Payload August 19955. CONFORMANCE REQUIREMENTS Implementations that claim conformance or compliance with this specification MUST fully implement the header described here, MUST support manual key distribution with this header, MUST comply with all requirements of the "Security Architecture for the Internet Protocol" [Atk95a], and MUST support the use of DES CBC as specified in the companion document entitled "The ESP DES-CBC Transform" [KMS95]. Implementors MAY also implement other ESP transforms. Implementers should consult the most recent version of the "IAB Official Standards" RFC for further guidance on the status of this document.6. SECURITY CONSIDERATIONS This entire document discusses a security mechanism for use with IP. This mechanism is not a panacea, but it does provide an important component useful in creating a secure internetwork. Cryptographic transforms for ESP which use a block-chaining algorithm and lack a strong integrity mechanism are vulnerable to a cut-and- paste attack described by Bellovin and should not be used unless the Authentication Header is always present with packets using that ESP transform [Bel95]. Users need to understand that the quality of the security provided by this specification depends completely on the strength of whichever encryption algorithm has been implemented, the correctness of that algorithm's implementation, upon the security of the key management mechanism and its implementation, the strength of the key [CN94] [Sch94, p233] and upon the correctness of the ESP and IP implementations in all of the participating systems. If any of these assumptions do not hold, then little or no real security will be provided to the user. Use of high assurance development techniques is recommended for the IP Encapsulating Security Payload. Users seeking protection from traffic analysis might consider the use of appropriate link encryption. Description and specification of link encryption is outside the scope of this note. If user-oriented keying is not in use, then the algorithm in use should not be an algorithm vulnerable to any kind of Chosen Plaintext attack. Chosen Plaintext attacks on DES are described in [BS93] and [Mat94]. Use of user-oriented keying is recommended in order to preclude any sort of Chosen Plaintext attack and to generally make cryptanalysis more difficult. Implementations SHOULD support user-Atkinson Standards Track [Page 9]RFC 1827 Encapsulating Security Payload August 1995 oriented keying as is described in the IP Security Architecture [Atk95a].ACKNOWLEDGEMENTS This document benefited greatly from work done by Bill Simpson, Perry Metzger, and Phil Karn to make general the approach originally defined by the author for SIP, SIPP, and finally IPv6. Many of the concepts here are derived from or were influenced by the US Government's SP3 security protocol specification, the ISO/IEC's NLSP specification, or from the proposed swIPe security protocol [SDNS89, ISO92a, IB93, IBK93, ISO92b]. The use of DES for confidentiality is closely modeled on the work done for the SNMPv2 [GM93]. Steve Bellovin, Steve Deering, Dave Mihelcic, and Hilarie Orman provided solid critiques of early versions of this memo.REFERENCES [Atk95a] Atkinson, R., "Security Architecture for the Internet Protocol", RFC 1825, NRL, August 1995. [Atk95b] Atkinson, R., "IP Authentication Header", RFC 1826, NRL, August 1995. [Bel89] Steven M. Bellovin, "Security Problems in the TCP/IP Protocol Suite", ACM Computer Communications Review, Vol. 19, No. 2, March 1989. [Bel95] Steven M. Bellovin, Presentation at IP Security Working Group Meeting, Proceedings of the 32nd Internet Engineering Task Force, March 1995, Internet Engineering Task Force, Danvers, MA. [BS93] Eli Biham and Adi Shamir, "Differential Cryptanalysis of the Data Encryption Standard", Springer-Verlag, New York, NY, 1993. [CN94] John M. Carroll & Sri Nudiati, "On Weak Keys and Weak Data: Foiling the Two Nemeses", Cryptologia, Vol. 18, No. 23, July 1994. pp. 253-280 [CERT95] Computer Emergency Response Team (CERT), "IP Spoofing Attacks and Hijacked Terminal Connections", CA-95:01, January 1995. Available via anonymous ftp from info.cert.org.Atkinson Standards Track [Page 10]RFC 1827 Encapsulating Security Payload August 1995 [DIA] US Defense Intelligence Agency (DIA), "Compartmented Mode Workstation Specification", Technical Report DDS-2600-6243-87. [GM93] Galvin J., and K. McCloghrie, "Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1446, Trusted Information Systems, Hughes LAN Systems, April 1993. [Hin94] Bob Hinden (Editor), Internet Protocol version 6 (IPv6) Specification, Work in Progress, October 1994. [IB93] John Ioannidis & Matt Blaze, "Architecture and Implementation of Network-layer Security Under Unix", Proceedings of the USENIX Security Symposium, Santa Clara, CA, October 1993. [IBK93] John Ioannidis, Matt Blaze, & Phil Karn, "swIPe: Network-Layer Security for IP", presentation at the Spring 1993 IETF Meeting, Columbus, Ohio. [ISO92a] ISO/IEC JTC1/SC6, Network Layer Security Protocol, ISO-IEC DIS 11577, International Standards Organisation, Geneva, Switzerland, 29 November 1992. [ISO92b] ISO/IEC JTC1/SC6, Network Layer Security Protocol, ISO-IEC DIS 11577, Section 13.4.1, page 33, International Standards Organisation, Geneva, Switzerland, 29 November 1992. [Ken91] Kent, S., "US DoD Security Options for the Internet Protocol", RFC 1108, BBN Communications, November 1991. [KMS95] Karn, P., Metzger, P., and W. Simpson, "The ESP DES-CBC Transform", RFC 1829, Qualcomm, Inc., Piermont, Daydreamer, August 1995. [Mat94] Matsui, M., "Linear Cryptanalysis method for DES Cipher", Proceedings of Eurocrypt '93, Berlin, Springer-Verlag, 1994. [NIST77] US National Bureau of Standards, "Data Encryption Standard", Federal Information Processing Standard (FIPS) Publication 46, January 1977. [NIST80] US National Bureau of Standards, "DES Modes of Operation" Federal Information Processing Standard (FIPS) Publication 81, December 1980.Atkinson Standards Track [Page 11]RFC 1827 Encapsulating Security Payload August 1995 [NIST81] US National Bureau of Standards, "Guidelines for Implementing and Using the Data Encryption Standard", Federal Information Processing Standard (FIPS) Publication 74, April 1981. [NIST88] US National Bureau of Standards, "Data Encryption Standard", Federal Information Processing Standard (FIPS) Publication 46-1, January 1988. [STD-2] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1700, USC/Information Sciences Institute, October 1994. [Sch94] Bruce Schneier, Applied Cryptography, John Wiley & Sons, New York, NY, 1994. ISBN 0-471-59756-2 [SDNS89] SDNS Secure Data Network System, Security Protocol 3, SP3, Document SDN.301, Revision 1.5, 15 May 1989, as published in NIST Publication NIST-IR-90-4250, February 1990.DISCLAIMER The views and specification here are those of the author and are not necessarily those of his employer. The Naval Research Laboratory has not passed judgement on the merits, if any, of this work. The author and his employer specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this specification.AUTHOR'S ADDRESS Randall Atkinson Information Technology Division Naval Research Laboratory Washington, DC 20375-5320 USA Phone: (202) 404-7090 Fax: (202) 404-7942 EMail: atkinson@itd.nrl.navy.milAtkinson Standards Track [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -