📄 rfc1193.txt
字号:
RFC 1193 Requirements for Real-Time Services November 1990 related to the basic decisions to be made in the design of the server as they are to client requirements. Objection 1: Guarantees are not necessary. This is the most radical objection, as it stems from a basic disagreement with our definition of real-time service. The problem, however, is not with definitions or terminologies: the really important question is whether a type of service such as the one we call "real-time" will be necessary or at least useful in future networks. This objection is raised by the optimists, those who believe that network bandwidth will be so abundant that congestion will become a disease of the past, and that delays will therefore be small enough that the enforcement of legalistic guarantees will not be necessary. The history of computers and communications, however, does not unfortunately support these arguments, while it supports those of the pessimists. In a situation of limited resources (limited with respect to the existing demand for them), we believe that there is no serious solution of the real-time communication problem other than one based on a policy for the allocation of resources that rigorously guarantees the satisfaction of performance needs. Even if the approaches to be adopted in practical networks will provide only approximate guarantees, it is important to devise methods that offer without exceptions precisely defined bounds. These methods can at the very least be used as reference approaches for comparison and evaluation. Objection 2: Real-time services are too expensive because reservation of resources is very wasteful. This may be true if resources are exclusively reserved; for example, physical circuits used for bursty traffic in a circuit-switched network. There are, however, other ways of building real-time services, based on priority mechanisms and preemption rather than exclusive reservation of resources. With these schemes, the real- time traffic always finds the resources it needs by preempting non- real-time traffic, as long as the real-time load is kept below a threshold. The threshold corresponds to the point where the demand by real-time traffic for the bottleneck resource equals the amount of that resource in the system. With this scheme, all resources not used by real-time traffic can be used at any time by local tasks and non-real-time traffic. Congestion may affect the latter, but not real-time traffic. Thus, the only limitation is that a network cannot carry unbounded amounts of real-time traffic, and must refuse any further requests when it has reached the saturation point.Ferrari [Page 19]RFC 1193 Requirements for Real-Time Services November 1990 Objection 3: Real-time services can be built on top of non-real-time servers. If one accepts our interpretation of the term "guarantee," one can easily see that performance guarantees cannot be provided by a higher-level server unless it can rely on real-time support by its underlying server. Since this is true at all levels, we conclude that a real-time network service and similar services at all intermediate levels are needed to provide guaranteed performance to human clients and applications. Objection 4: Delay bounds are not necessary, throughput requirements suffice. Guaranteeing minimum throughput bounds does not automatically and in general result in any stringent upper bound on delay. Delays in the hosts and nodes of a packet-switching network fluctuate because of bursty real-time message streams, starting and ending of traffic on individual connections (even those with continuous, constant-rate traffic), and the behavior of scheduling algorithms. Even if delays did not fluctuate, but had a constant value, it would be possible for a given throughput bound to be satisfied with many different constant values for the delay of each message. If delay bounds are wanted, they must be explicitly guaranteed and enforced. (In a circuit- switching network, the circuit assigned to a connection has its own throughput and its own delay. These values may be considered as explicitly guaranteed and enforced.) But are delay bounds wanted? We believe they are in digital video and audio communication, especially in the form of delay jitter bounds, and they will be in other contexts as soon as a service which can bound delays is offered. Objection 5: Satisfaction of statistical bounds is impossible to verify. Strictly speaking, this objection is valid. No matter how many packets on a connection have been delayed beyond their bound (or lost or delivered with errors), it is always in principle possible for the server to redress the situation in the future and meet the given statistical requirements. A more sensible and verifiable bound would be a fractional one (see Section 3). For instance, such a bound could be specified as follows: out of 100 consecutive packets, no less than 97 shall not be late. In this case, the bound is no longer Zmin, a probability of 0.97, but is given by the two values B = 97 and A = 100; it is not only their ratio that counts but also their individual values.Ferrari [Page 20]RFC 1193 Requirements for Real-Time Services November 19908. Conclusion This paper has presented a specification of some of the requirements that human clients and applications may wish to impose on real-time communications. Though those listed seem to be among the most useful and natural ones, no attempt has been made to be exhaustive and comprehensive. We have investigated delay bounds, throughput bounds, reliability bounds, and other requirements. We have studied how the requirements should be translated from the client's level into forms suitable (and correct) for lower levels, described some examples of requirement specification, and discussed some of the objections that may be raised. The material in this paper covers only part of the first phase in the design of a real-time service: that during which the various requirements are assembled and examined to extract useful suggestions for the design of the server. Server needs and design principles will be the subject of the subsequent paper mentioned several times above.Acknowledgments Ralf Herrtwich and Dinesh Verma contributed ideas to, and corrected mistakes in, a previous version of the manuscript. The author is deeply indebted to them for their help and for the many discussions he had with them on the topics dealt with in this paper. The comments of Ramesh Govindan and Riccardo Gusella are also gratefully acknowledged.References [Brad64] Brady, P., "A Technique for Investigating On-Off Patterns of Speech", Bell Systems Technical Journal, Vol. 44, Pgs. 1-22, 1964. [Ferr89a] Ferrari, D., "Real-Time Communication in Packet-Switching Wide-Area Networks", Technical Report TR-89-022, International Computer Science Institute, Berkeley, May 1989. [Ferr89b] Ferrari D., and D. Verma, "A Scheme for Real-Time Channel Establishment in Wide-Area Networks", IEEE J. Selected Areas Communications SAC-8, April 1990. [Gait90] Gaitonde, S., D. Jacobson, and A. Pohm, "Bounding Delay on a Multifarious Token Ring Network", Communications of theFerrari [Page 21]RFC 1193 Requirements for Real-Time Services November 1990 ACM, Vol. 33, No. 1, Pgs. 20-28, January 1990. [Herr89] Herrtwich R., and U. Brandenburg, "Accessing and Customizing Services in Distributed Systems", Technical Report TR-89-059, International Computer Science Institute, Berkeley, October 1989. [Herr90] Herrtwich, R, personal communication, February 1990. [Verm90] Verma, D., personal communication, February 1990. Table Ia Examples of Client Requirements Interactive Non-Interactive Voice VideoDelay Boundsdeterministic:Dmax [ms] 200 - (1000) -statistical:Dmax [ms] - 200 - (1000) Zmin - (*) - (*)jitter:Jmax [ms] 1 5Throughput Boundsdeterministic:Tmin [kby/s] 8.834 4140average:Tave [kby/s] 3.933 4140 I [s] 100 100Reliability Bound:Wmin 0.98 (*) (0.90) (*)Delay&Reliability:ZminWmin - 0.98 - 0.90Sequencing yes yesAbsence of Duplications yes yesFailure Recovery: max.repair time [s] 10 100Max.Setup Time [s] 0.8 (o) 15 (o)----------------------------------(*) To be chosen by the server(o) Could be much longer if advance reservations were required(+) Could be achieved by using a preexisting connectionFerrari [Page 22]RFC 1193 Requirements for Real-Time Services November 1990 Table Ib Examples of Client Requirements Real-Time File Datagram TransferDelay Boundsdeterministic:Dmax [ms] 50 - (1500)statistical:Dmax [ms] - (1000) - Zmin - (0.95) -jitter:Jmax [ms] - -Throughput Boundsdeterministic:Tmin [kby/s] - 728average:Tave [kby/s] - 700 I [s] - 100Reliability Bound:Wmin 0.98 1Delay&Reliability:ZminWmin - -Sequencing - yesAbsence of Duplications yes yesFailure Recovery: max.repair time [s] - 100Max.Setup Time [s] 0 (+) 5 (o)----------------------------------(*) To be chosen by the server(o) Could be much longer if advance reservations were required(+) Could be achieved by using a preexisting connectionFerrari [Page 23]RFC 1193 Requirements for Real-Time Services November 1990 Table II Translation of the Requirements in Table I Non-Interactive File Video TransferDelay Boundsdeterministic:Dmax' [ms] (966) - - (1482)statistical:Dmax' [ms] - (966) (982) - Zmin' - (*) (0.95) -jitter:Jmax' [ms] 5 -Reliability Bound:Wmin' 0.90-1 (*) 1Delay&Reliability:(ZminWmin)' - 0.90-1 -_____________________________________(*) To be chosen by the serverSecurity Considerations Security considerations are not discussed in this memo.Author's Address Domenico Ferrari University of California Computer Science Division EECS Department Berkeley, CA 94720 Phone: (415) 642-3806 EMail: ferrari@UCBVAX.BERKELEY.EDUFerrari [Page 24]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -