📄 rfc1193.txt
字号:
RFC 1193 Requirements for Real-Time Services November 1990 encountered by a message in each layer (or group of layers) in the hosts will have to be estimated and enforced. The delay bound for a server at a given level will be obtained by subtracting the delay bounds of the layers above it in both the sending and the receiving host from the original global bound: Dmax' = Dmax - SUMi {d(max,i)}. Message fragmentation can be handled by recalling that delay is defined as the difference between the instant of completion of the reception of a message and the instant when its shipment began. If x is the interfragment time (assumed constant for simplicity here) and f is the number of fragments in a message, we have Dmax' = Dmax - x(f-1), where Dmax' is the fragment delay bound corresponding to the message delay bound Dmax, i.e., the delay of the first fragment. (ii) Statistical delay bound. The statistical case is more complicated. If the bounds on the delay in each layer (or group of layers) are statistical, we may approach the problem of the messages delayed beyond the bound pessimistically, in which case we shall write Zmin' = Zmin / (PRODi {z(min,i)}), where the index i spans the layers (or group of layers) above the given lower-level server, Zmin' is the probability bound to be enforced by that lower-level server, and d(max,i) and z(min,i) are the bounds for layer i. (A layer has a sender side and a receiver side at the same level in the hierarchy.) The expression for Zmin' is pessimistic because it assumes that a message delayed beyond its bound in a layer will not be able to meet the global bound Dmax. (The expression above and the next one assume that the delays of a message in the layers are statistically independent of each other. This assumption is usually not valid, but, in the light of the observations that follow the next expression, the error should be tolerable.) At the other extreme, we have the optimistic approach, which assumes that a message will not satisfy the global bound only if it is delayed beyond its local bound in each layer: Zmin' = 1 - (1 - Zmin)/(PRODi {1 - z(min,i)}).Ferrari [Page 13]RFC 1193 Requirements for Real-Time Services November 1990 The correct assumption will be somewhere in between the pessimistic and the optimistic ones. However, in order to be able to guarantee the global bound, the system will have to choose the pessimistic approach, unless a better approximation to reality can be found. An alternative that may turn out to be more convenient is the one of considering the bounds in the layers as deterministic, in which case Zmin' will equal Zmin, and the global bound will be statistical only because the network will guarantee a statistical bound. When estimating the effects of message fragmentation, the new bounds must refer to the fragment stream as though its components were independent of each other. Assuming sequential delivery of fragments, a message is delayed beyond its bound if its last fragment is delayed beyond the fragment bound. Our goal can be achieved by imposing the same probability bound on fragments as on messages [Verm90]. Thus, Zmin' = Zmin. Note that both expressions for D prime sub max given in (i) above apply to the statistical delay bound case as well. (iii) Deterministic delay-jitter bound. For the case of layer to layer translation, the discussion above yields: Jmax' = Jmax - SUMi {j(max,i)} , where j(max,i) is the deterministic jitter bound of the i-th layer above the given lower-level server. When messages are fragmented, the delay jitter bound can be left unchanged: Jmax' = Jmax . There would be reasons to reduce it in the case of message fragmentation only if the underlying server did not guarantee sequenced delivery, and if no resequencing of fragments were provided by the corresponding reassembly layer on the receiving side. (iv) Statistical delay-jitter bound. The interested reader will be able with little effort to derive the translation formulas for this case from the definition in Section 3.1 (iv) and from the discussion in (ii) and (iii) above.Ferrari [Page 14]RFC 1193 Requirements for Real-Time Services November 19905.2 Throughput requirements Since all layers are in cascade, the throughput bounds would be the same for all of them if headers and sometimes trailers were not added at each layer for encapsulation or fragmentation. Thus, throughput bounds have to be increased as the request travels downward through the protocol hierarchy, and the server at each layer knows by how much, since it is responsible for these additions.5.3 Reliability requirements If we assume, quite realistically, that the probability of message loss in a host is extremely small, then we do not have to change the value of Wmin when we change layers. The effects of message fragmentation are similar to those on statistical delay bounds, but in a given application a message may be lost even if only one of its fragments is lost. Thus, we have Wmin' = 1 - (1 - Wmin)/f , where Wmin' is the lower bound of the correct delivery probability for the fragment stream, and f is the number of fragments per message. The optimistic viewpoint, which is the one we adopted in Section 5.1 (ii), yields Wmin' = Wmin, and the observations made in that section about the true bound and about providing guarantees apply.5.4 Other requirements Of the requirements and desiderata discussed in Section 4, those that are specified as a Boolean value or a qualitative attribute do not have to be modified for lower-level servers unless they are satisfied in some layer above those servers (e.g., no sequencing is to be required below the level where a resequencer operates). When they are represented by a bound (e.g., one on the setup time, as described in Section 4.4), then bounds for the layers above a lower-level server will have to be chosen to calculate the corresponding bound for that server. The above discussions of the translation of performance requirements will, in most cases, provide the necessary techniques for doing these calculations. The requirement that the server give clear and useful replies to client requests (see Section 2) raises the interesting problem of reverse translation, that from lower-level to upper-level specifications. However, at least in most cases, this does not seem to be a difficult problem: all the translation formulas we have written above are very easily invertible (in other words, it isFerrari [Page 15]RFC 1193 Requirements for Real-Time Services November 1990 straightforward to express Dmax as a function of Dmax', Zmin as a function of Zmin', and so on).6. Examples In this section we describe some examples of client requirements for real-time services. Simplifying assumptions are introduced to decrease the amount of detail and increase clarity. Our intent is to determine the usefulness of the set of requirements proposed above, and to investigate some of the problems that may arise in practical cases. An assumption underlying all examples is that the network's transmission rate is 45 Mbits/s, and that the hosts can keep up with this rate when processing messages.6.1 Interactive voice Let us assume that human clients are to specify the requirements for voice that is already digitized (at a 64 kbits/s rate) and packetized (packet size: 48 bytes, coinciding with the size of an ATM cell; packet transmission time: 8.53 microseconds ; packet interarrival time: 6 ms). Since the communication is interactive, deterministic (and statistical) delay bounds play a very important role. Jitter is also important, but does not dominate the other requirements as in non-interactive audio or video communication (see Section 6.2). The minimum throughput offered by the system must correspond to the maximum input rate, i.e., 64 kbits/s; in fact, because of header overhead (5 control bytes for every 48 data bytes), total guaranteed throughput should be greater than 70.66 kbits/s, i.e., 8,834 bytes/s. (Since the client may not know the overhead introduced by the system, the system may have to compute this value from the one given by the client, which in this case would be 8 kbytes/s.) The minimum average throughput over an interval as long as 100 s is 44% of Tmin, due to the silence periods [Brad64]. Voice transmission can tolerate limited packet losses without making the speech unintelligible at the receiving end. We assume that a maximum loss of two packets out of 100 (each packet corresponding to 6 ms of speech) can be tolerated even in the worst case, i.e., when the two packets are consecutive. Since packets arriving after their absolute deadline are discarded if the delay bound is to be statistical, then this maximum loss rate must include losses due to lateness, i.e., 0.98 will have to be the value of Zmin Wmin rather than just that of Wmin. This is illustrated in the first column of Table Ia, which consists of two subcolumns: one is for the choice of a deterministic delay bound, the other one for that of a statistical delay bound and a combined bound on the probability of lateness or loss. If in a rowFerrari [Page 16]RFC 1193 Requirements for Real-Time Services November 1990 there is a single entry, that entry is the same for both subcolumns. Note that the maximum setup time could be made much longer if connections had to be reserved in advance. Since voice is packetized at the client's level, we will not have to worry about the effects of fragmentation while translating the requirements into their lower-level correspondents.6.2 Non-interactive video At the level of the client, the video message stream consists of 1 Mbit frames, to be transmitted at the rate of 30 frames per second. Thus, the throughput bounds (both deterministic and average) are, taking into account the overhead of ATM cell headers, 4.14 Mbytes/s. As in the case of interactive voice, we have two alternatives for the specification of delay bounds: the first subcolumn is for the deterministic bound case, the second for that of a statistical bound on delays and a combined probability bound on lateness or loss; the latter bound is set to at most 10 frames out of 100, i.e., three out of 30. However, the really important bound in this case is the one on delay jitter, set at 5 ms, which is roughly equal to half of the interval between two successive frames, and between 1/4 and 1/5 of the transmission time. This dominance of the jitter bound is the reason why the other delay bounds are in parentheses. If we assume that video frames will have to be fragmented into cells at some lower level in the protocol hierarchy, then these requirements must be translated at that level into those shown in the first column of Table II. The values of Dmax' have been calculated with x = 12.8 microseconds and f = 2605 fragments/frame. The range of Wmin' and of (Zmin Wmin)' is quite wide, and achieving its higher value (a probability of 1) may turn out to be either very expensive or impossible. We observe, however, that a frame in which a packet or more are missing or have been incorrectly received does not have to be discarded but can be played with gaps or patched with the old packets in lieu of the missing or corrupted ones. Thus, it may be possible to consider an optimistic approach (e.g., Zmin' = Zmin, Wmin' = Wmin, (Zmin Wmin)' = Zmin Wmin ) as sufficiently safe.6.3 Real-time datagram A real-time datagram is, for instance, an alarm condition to be transmitted in an emergency from one machine to another (or a group of others) in a distributed real-time system. The client requirements in this case are very simple: a deterministic bound is needed (we are assuming that this is a hard-real-time context), the reliability of delivery must be very high, and the service setup time should be very small. The value of 0.98 for Wmin in Table Ib triesFerrari [Page 17]RFC 1193 Requirements for Real-Time Services November 1990 to account for the inevitable network errors and to suggest that retransmission should not be used as might be necessary if we wanted to have Wmin = 1, because it would be too slow. To increase reliability in this case, error correcting codes or spatial redundancy will have to be resorted to instead. Note that one method for obtaining a very small setup time consists of shipping such urgent datagrams on long-lasting connections previously created between the hosts involved and with the appropriate characteristics. Note also that throughput requirements cannot be defined, since we are dealing with one small message only, which may not even have to be fragmented. Guarantees on the other bounds will fully satisfy the needs of the client in this case.6.4 File transfer Large files are to be copied from a disk to a remote disk. We assume that the receiving disk's speed is greater than or equal to the sending disk's, and that the transfer could therefore proceed, in the absence of congestion, at the speed of the sending disk. The message size equals the size of one track (11 Kbytes, including disk surface overhead such as intersector gaps), and the maximum input rate is 5.28 Mbits/s. Taking into account the ATM cell headers, this rate becomes 728 kbytes/s; this is the minimum peak throughput to be guaranteed by the system. The minimum average throughput to be provided is smaller, due to head switching times and setup delays (seek times are even longer, hence need not be considered here): we set its value at 700 kbytes/s. Delay bounds are much less important in this example than in the previous ones; in Table Ib, we show deterministic and statistical bounds in parentheses. Reliability must be eventually 1 to ensure the integrity of the file's copy. This result will have to be obtained by error correction (which will increase the throughput requirements) or retransmission (which would break most delay bounds if they were selected on the basis of the first shipment only instead of the last one). The second column in Table II shows the results of translating these requirements to account for message fragmentation. The values x = 78.3 microseconds and f = 230 have been used to compute those of Dmax'.7. Discussion In this section, we briefly discuss some of the objections that can be raised concerning our approach to real-time service requirements. Some of the objections are fundamental ones: they are at least asFerrari [Page 18]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -