📄 rfc2923.txt
字号:
Network Working Group K. LaheyRequest for Comments: 2923 dotRocket, Inc.Category: Informational September 2000 TCP Problems with Path MTU DiscoveryStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.Abstract This memo catalogs several known Transmission Control Protocol (TCP) implementation problems dealing with Path Maximum Transmission Unit Discovery (PMTUD), including the long-standing black hole problem, stretch acknowlegements (ACKs) due to confusion between Maximum Segment Size (MSS) and segment size, and MSS advertisement based on PMTU.1. Introduction This memo catalogs several known TCP implementation problems dealing with Path MTU Discovery [RFC1191], including the long-standing black hole problem, stretch ACKs due to confusion between MSS and segment size, and MSS advertisement based on PMTU. The goal in doing so is to improve conditions in the existing Internet by enhancing the quality of current TCP/IP implementations. While Path MTU Discovery (PMTUD) can be used with any upper-layer protocol, it is most commonly used by TCP; this document does not attempt to treat problems encountered by other upper-layer protocols. Path MTU Discovery for IPv6 [RFC1981] treats only IPv6-dependent issues, but not the TCP issues brought up in this document. Each problem is defined as follows: Name of Problem The name associated with the problem. In this memo, the name is given as a subsection heading.Lahey Informational [Page 1]RFC 2923 TCP Problems with Path MTU Discovery September 2000 Classification One or more problem categories for which the problem is classified: "congestion control", "performance", "reliability", "non-interoperation -- connectivity failure". Description A definition of the problem, succinct but including necessary background material. Significance A brief summary of the sorts of environments for which the problem is significant. Implications Why the problem is viewed as a problem. Relevant RFCs The RFCs defining the TCP specification with which the problem conflicts. These RFCs often qualify behavior using terms such as MUST, SHOULD, MAY, and others written capitalized. See RFC 2119 for the exact interpretation of these terms. Trace file demonstrating the problem One or more ASCII trace files demonstrating the problem, if applicable. Trace file demonstrating correct behavior One or more examples of how correct behavior appears in a trace, if applicable. References References that further discuss the problem. How to detect How to test an implementation to see if it exhibits the problem. This discussion may include difficulties and subtleties associated with causing the problem to manifest itself, and with interpreting traces to detect the presence of the problem (if applicable). How to fix For known causes of the problem, how to correct the implementation.Lahey Informational [Page 2]RFC 2923 TCP Problems with Path MTU Discovery September 20002. Known implementation problems2.1. Name of Problem Black Hole Detection Classification Non-interoperation -- connectivity failure Description A host performs Path MTU Discovery by sending out as large a packet as possible, with the Don't Fragment (DF) bit set in the IP header. If the packet is too large for a router to forward on to a particular link, the router must send an ICMP Destination Unreachable -- Fragmentation Needed message to the source address. The host then adjusts the packet size based on the ICMP message. As was pointed out in [RFC1435], routers don't always do this correctly -- many routers fail to send the ICMP messages, for a variety of reasons ranging from kernel bugs to configuration problems. Firewalls are often misconfigured to suppress all ICMP messages. IPsec [RFC2401] and IP-in-IP [RFC2003] tunnels shouldn't cause these sorts of problems, if the implementations follow the advice in the appropriate documents. PMTUD, as documented in [RFC1191], fails when the appropriate ICMP messages are not received by the originating host. The upper- layer protocol continues to try to send large packets and, without the ICMP messages, never discovers that it needs to reduce the size of those packets. Its packets are disappearing into a PMTUD black hole. Significance When PMTUD fails due to the lack of ICMP messages, TCP will also completely fail under some conditions. Implications This failure is especially difficult to debug, as pings and some interactive TCP connections to the destination host work. Bulk transfers fail with the first large packet and the connection eventually times out. These situations can almost always be blamed on a misconfiguration within the network, which should be corrected. However it seems inappropriate for some TCP implementations to sufferLahey Informational [Page 3]RFC 2923 TCP Problems with Path MTU Discovery September 2000 interoperability failures over paths which do not affect other TCP implementations (i.e. those without PMTUD). This creates a market disincentive for deploying TCP implementation with PMTUD enabled. Relevant RFCs RFC 1191 describes Path MTU Discovery. RFC 1435 provides an early description of these sorts of problems. Trace file demonstrating the problem Made using tcpdump [Jacobson89] recording at an intermediate host. 20:12:11.951321 A > B: S 1748427200:1748427200(0) win 49152 <mss 1460> 20:12:11.951829 B > A: S 1001927984:1001927984(0) ack 1748427201 win 16384 <mss 65240> 20:12:11.955230 A > B: . ack 1 win 49152 (DF) 20:12:11.959099 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:12:13.139074 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:12:16.188685 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:12:22.290483 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:12:34.491856 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:12:58.896405 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:13:47.703184 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:14:52.780640 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:15:57.856037 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:17:02.932431 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:18:08.009337 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:19:13.090521 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:20:18.168066 A > B: . 1:1461(1460) ack 1 win 49152 (DF) 20:21:23.242761 A > B: R 1461:1461(0) ack 1 win 49152 (DF) The short SYN packet has no trouble traversing the network, due to its small size. Similarly, ICMP echo packets used to diagnose connectivity problems will succeed. Large data packets fail to traverse the network. Eventually the connection times out. This can be especially confusing when the application starts out with a very small write, which succeeds, following up with many large writes, which then fail. Trace file demonstrating correct behavior Made using tcpdump recording at an intermediate host. 16:48:42.659115 A > B: S 271394446:271394446(0) win 8192 <mss 1460> (DF) 16:48:42.672279 B > A: S 2837734676:2837734676(0) ack 271394447 win 16384 <mss 65240>Lahey Informational [Page 4]RFC 2923 TCP Problems with Path MTU Discovery September 2000 16:48:42.676890 A > B: . ack 1 win 8760 (DF) 16:48:42.870574 A > B: . 1:1461(1460) ack 1 win 8760 (DF) 16:48:42.871799 A > B: . 1461:2921(1460) ack 1 win 8760 (DF) 16:48:45.786814 A > B: . 1:1461(1460) ack 1 win 8760 (DF) 16:48:51.794676 A > B: . 1:1461(1460) ack 1 win 8760 (DF) 16:49:03.808912 A > B: . 1:537(536) ack 1 win 8760 16:49:04.016476 B > A: . ack 537 win 16384 16:49:04.021245 A > B: . 537:1073(536) ack 1 win 8760 16:49:04.021697 A > B: . 1073:1609(536) ack 1 win 8760 16:49:04.120694 B > A: . ack 1609 win 16384 16:49:04.126142 A > B: . 1609:2145(536) ack 1 win 8760 In this case, the sender sees four packets fail to traverse the network (using a two-packet initial send window) and turns off PMTUD. All subsequent packets have the DF flag turned off, and the size set to the default value of 536 [RFC1122]. References This problem has been discussed extensively on the tcp-impl mailing list; the name "black hole" has been in use for many years. How to detect This shows up as a TCP connection which hangs (fails to make progress) until closed by timeout (this often manifests itself as a connection that connects and starts to transfer, then eventually terminates after 15 minutes with zero bytes transfered). This is particularly annoying with an application like ftp, which will work perfectly while it uses small packets for control information, and then fail on bulk transfers. A series of ICMP echo packets will show that the two end hosts are still capable of passing packets, a series of MTU-sized ICMP echo packets will show some fragmentation, and a series of MTU-sized ICMP echo packets with DF set will fail. This can be confusing for network engineers trying to diagnose the problem. There are several traceroute implementations that do PMTUD, and can demonstrate the problem. How to fix TCP should notice that the connection is timing out. After several timeouts, TCP should attempt to send smaller packets, perhaps turning off the DF flag for each packet. If this succeeds, it should continue to turn off PMTUD for the connection for some reasonable period of time, after which it should probe again to try to determine if the path has changed.Lahey Informational [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -