📄 eth_registers.v
字号:
.Write (MAC_ADDR1_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MAC_ADDR1Out[31:`ETH_MAC_ADDR1_WIDTH] = 0;
// RXHASH0 Register
eth_register #(`ETH_HASH0_WIDTH, `ETH_HASH0_DEF) RXHASH0
(
.DataIn (DataIn),
.DataOut (HASH0Out),
.Write (HASH0_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
// RXHASH1 Register
eth_register #(`ETH_HASH1_WIDTH, `ETH_HASH1_DEF) RXHASH1
(
.DataIn (DataIn),
.DataOut (HASH1Out),
.Write (HASH1_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
// TXCTRL Register
eth_register #((`ETH_TX_CTRL_WIDTH-1), {(`ETH_TX_CTRL_WIDTH-1){1'b0}}) TXCTRL0
(
.DataIn (DataIn[`ETH_TX_CTRL_WIDTH-2:0]),
.DataOut (TXCTRLOut[`ETH_TX_CTRL_WIDTH-2:0]),
.Write (TXCTRL_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
eth_register #(1, 1'b0) TXCTRL1 // Request bit is synchronously reset
(
.DataIn (DataIn[16]),
.DataOut (TXCTRLOut[16]),
.Write (TXCTRL_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (RstTxPauseRq)
);
assign TXCTRLOut[31:`ETH_TX_CTRL_WIDTH] = 0;
// RXCTRL Register
eth_register #(`ETH_RX_CTRL_WIDTH, `ETH_RX_CTRL_DEF) RXCTRL
(
.DataIn (DataIn[`ETH_RX_CTRL_WIDTH-1:0]),
.DataOut (RXCTRLOut[`ETH_RX_CTRL_WIDTH-1:0]),
.Write (RXCTRL_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign RXCTRLOut[31:`ETH_RX_CTRL_WIDTH] = 0;
// Reading data from registers
always @ (Address or Read or MODEROut or INT_SOURCEOut or
INT_MASKOut or IPGTOut or IPGR1Out or IPGR2Out or
PACKETLENOut or COLLCONFOut or CTRLMODEROut or MIIMODEROut or
MIICOMMANDOut or MIIADDRESSOut or MIITX_DATAOut or MIIRX_DATAOut or
MIISTATUSOut or MAC_ADDR0Out or MAC_ADDR1Out or TX_BD_NUMOut or
HASH0Out or HASH1Out or TXCTRLOut or RXCTRLOut
)
begin
if(Read) // read
begin
case(Address)
`ETH_MODER_ADR : DataOut<=MODEROut;
`ETH_INT_SOURCE_ADR : DataOut<=INT_SOURCEOut;
`ETH_INT_MASK_ADR : DataOut<=INT_MASKOut;
`ETH_IPGT_ADR : DataOut<=IPGTOut;
`ETH_IPGR1_ADR : DataOut<=IPGR1Out;
`ETH_IPGR2_ADR : DataOut<=IPGR2Out;
`ETH_PACKETLEN_ADR : DataOut<=PACKETLENOut;
`ETH_COLLCONF_ADR : DataOut<=COLLCONFOut;
`ETH_CTRLMODER_ADR : DataOut<=CTRLMODEROut;
`ETH_MIIMODER_ADR : DataOut<=MIIMODEROut;
`ETH_MIICOMMAND_ADR : DataOut<=MIICOMMANDOut;
`ETH_MIIADDRESS_ADR : DataOut<=MIIADDRESSOut;
`ETH_MIITX_DATA_ADR : DataOut<=MIITX_DATAOut;
`ETH_MIIRX_DATA_ADR : DataOut<=MIIRX_DATAOut;
`ETH_MIISTATUS_ADR : DataOut<=MIISTATUSOut;
`ETH_MAC_ADDR0_ADR : DataOut<=MAC_ADDR0Out;
`ETH_MAC_ADDR1_ADR : DataOut<=MAC_ADDR1Out;
`ETH_TX_BD_NUM_ADR : DataOut<=TX_BD_NUMOut;
`ETH_HASH0_ADR : DataOut<=HASH0Out;
`ETH_HASH1_ADR : DataOut<=HASH1Out;
`ETH_TX_CTRL_ADR : DataOut<=TXCTRLOut;
`ETH_RX_CTRL_ADR : DataOut<=RXCTRLOut;
default: DataOut<=32'h0;
endcase
end
else
DataOut<=32'h0;
end
assign r_RecSmall = MODEROut[16];
assign r_Pad = MODEROut[15];
assign r_HugEn = MODEROut[14];
assign r_CrcEn = MODEROut[13];
assign r_DlyCrcEn = MODEROut[12];
// assign r_Rst = MODEROut[11]; This signal is not used any more
assign r_FullD = MODEROut[10];
assign r_ExDfrEn = MODEROut[9];
assign r_NoBckof = MODEROut[8];
assign r_LoopBck = MODEROut[7];
assign r_IFG = MODEROut[6];
assign r_Pro = MODEROut[5];
assign r_Iam = MODEROut[4];
assign r_Bro = MODEROut[3];
assign r_NoPre = MODEROut[2];
assign r_TxEn = MODEROut[1] & (TX_BD_NUMOut>0); // Transmission is enabled when there is at least one TxBD.
assign r_RxEn = MODEROut[0] & (TX_BD_NUMOut<'h80); // Reception is enabled when there is at least one RxBD.
assign r_IPGT[6:0] = IPGTOut[6:0];
assign r_IPGR1[6:0] = IPGR1Out[6:0];
assign r_IPGR2[6:0] = IPGR2Out[6:0];
assign r_MinFL[15:0] = PACKETLENOut[31:16];
assign r_MaxFL[15:0] = PACKETLENOut[15:0];
assign r_MaxRet[3:0] = COLLCONFOut[19:16];
assign r_CollValid[5:0] = COLLCONFOut[5:0];
assign r_TxFlow = CTRLMODEROut[2];
assign r_RxFlow = CTRLMODEROut[1];
assign r_PassAll = CTRLMODEROut[0];
assign r_MiiNoPre = MIIMODEROut[8];
assign r_ClkDiv[7:0] = MIIMODEROut[7:0];
assign r_WCtrlData = MIICOMMANDOut[2];
assign r_RStat = MIICOMMANDOut[1];
assign r_ScanStat = MIICOMMANDOut[0];
assign r_RGAD[4:0] = MIIADDRESSOut[12:8];
assign r_FIAD[4:0] = MIIADDRESSOut[4:0];
assign r_CtrlData[15:0] = MIITX_DATAOut[15:0];
assign MIISTATUSOut[31:`ETH_MIISTATUS_WIDTH] = 0;
assign MIISTATUSOut[2] = NValid_stat ;
assign MIISTATUSOut[1] = Busy_stat ;
assign MIISTATUSOut[0] = LinkFail ;
assign r_MAC[31:0] = MAC_ADDR0Out[31:0];
assign r_MAC[47:32] = MAC_ADDR1Out[15:0];
assign r_HASH1[31:0] = HASH1Out;
assign r_HASH0[31:0] = HASH0Out;
assign r_TxBDNum[7:0] = TX_BD_NUMOut[7:0];
assign r_TxPauseTV[15:0] = TXCTRLOut[15:0];
assign r_TxPauseRq = TXCTRLOut[16];
// Synchronizing TxC Interrupt
always @ (posedge TxClk or posedge Reset)
begin
if(Reset)
SetTxCIrq_txclk <=#Tp 1'b0;
else
if(TxCtrlEndFrm & StartTxDone & r_TxFlow)
SetTxCIrq_txclk <=#Tp 1'b1;
else
if(ResetTxCIrq_sync2)
SetTxCIrq_txclk <=#Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq_sync1 <=#Tp 1'b0;
else
SetTxCIrq_sync1 <=#Tp SetTxCIrq_txclk;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq_sync2 <=#Tp 1'b0;
else
SetTxCIrq_sync2 <=#Tp SetTxCIrq_sync1;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq_sync3 <=#Tp 1'b0;
else
SetTxCIrq_sync3 <=#Tp SetTxCIrq_sync2;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq <=#Tp 1'b0;
else
SetTxCIrq <=#Tp SetTxCIrq_sync2 & ~SetTxCIrq_sync3;
end
always @ (posedge TxClk or posedge Reset)
begin
if(Reset)
ResetTxCIrq_sync1 <=#Tp 1'b0;
else
ResetTxCIrq_sync1 <=#Tp SetTxCIrq_sync2;
end
always @ (posedge TxClk or posedge Reset)
begin
if(Reset)
ResetTxCIrq_sync2 <=#Tp 1'b0;
else
ResetTxCIrq_sync2 <=#Tp SetTxCIrq_sync1;
end
// Synchronizing RxC Interrupt
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
SetRxCIrq_rxclk <=#Tp 1'b0;
else
if(SetPauseTimer & r_RxFlow)
SetRxCIrq_rxclk <=#Tp 1'b1;
else
if(ResetRxCIrq_sync2 & (~ResetRxCIrq_sync3))
SetRxCIrq_rxclk <=#Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq_sync1 <=#Tp 1'b0;
else
SetRxCIrq_sync1 <=#Tp SetRxCIrq_rxclk;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq_sync2 <=#Tp 1'b0;
else
SetRxCIrq_sync2 <=#Tp SetRxCIrq_sync1;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq_sync3 <=#Tp 1'b0;
else
SetRxCIrq_sync3 <=#Tp SetRxCIrq_sync2;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq <=#Tp 1'b0;
else
SetRxCIrq <=#Tp SetRxCIrq_sync2 & ~SetRxCIrq_sync3;
end
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
ResetRxCIrq_sync1 <=#Tp 1'b0;
else
ResetRxCIrq_sync1 <=#Tp SetRxCIrq_sync2;
end
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
ResetRxCIrq_sync2 <=#Tp 1'b0;
else
ResetRxCIrq_sync2 <=#Tp ResetRxCIrq_sync1;
end
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
ResetRxCIrq_sync3 <=#Tp 1'b0;
else
ResetRxCIrq_sync3 <=#Tp ResetRxCIrq_sync2;
end
// Interrupt generation
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_txb <= 1'b0;
else
if(TxB_IRQ)
irq_txb <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[0])
irq_txb <= #Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_txe <= 1'b0;
else
if(TxE_IRQ)
irq_txe <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[1])
irq_txe <= #Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_rxb <= 1'b0;
else
if(RxB_IRQ)
irq_rxb <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[2])
irq_rxb <= #Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_rxe <= 1'b0;
else
if(RxE_IRQ)
irq_rxe <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[3])
irq_rxe <= #Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_busy <= 1'b0;
else
if(Busy_IRQ)
irq_busy <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[4])
irq_busy <= #Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_txc <= 1'b0;
else
if(SetTxCIrq)
irq_txc <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[5])
irq_txc <= #Tp 1'b0;
end
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_rxc <= 1'b0;
else
if(SetRxCIrq)
irq_rxc <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[6])
irq_rxc <= #Tp 1'b0;
end
// Generating interrupt signal
assign int_o = irq_txb & INT_MASKOut[0] |
irq_txe & INT_MASKOut[1] |
irq_rxb & INT_MASKOut[2] |
irq_rxe & INT_MASKOut[3] |
irq_busy & INT_MASKOut[4] |
irq_txc & INT_MASKOut[5] |
irq_rxc & INT_MASKOut[6] ;
// For reading interrupt status
assign INT_SOURCEOut = {{(32-`ETH_INT_SOURCE_WIDTH){1'b0}}, irq_rxc, irq_txc, irq_busy, irq_rxe, irq_rxb, irq_txe, irq_txb};
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -