⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wb_slave_behavioral.v

📁 人民邮电出版社出版的《FPGA硬件接口设计实践》一书的代码
💻 V
字号:


`include "timescale.v"
`include "wb_model_defines.v"
module WB_SLAVE_BEHAVIORAL
(
	CLK_I,
	RST_I,
	ACK_O,
	ADR_I,
	CYC_I,
	DAT_O,
	DAT_I,
	ERR_O,
	RTY_O,
	SEL_I,
	STB_I,
	WE_I,
	CAB_I
);

/*------------------------------------------------------------------------------------------------------
WISHBONE signals
------------------------------------------------------------------------------------------------------*/
input                   CLK_I;
input                   RST_I;
output                  ACK_O;
input   `WB_ADDR_TYPE   ADR_I;
input                   CYC_I;
output  `WB_DATA_TYPE   DAT_O;
input   `WB_DATA_TYPE   DAT_I;
output                  ERR_O;
output                  RTY_O;
input   `WB_SEL_TYPE    SEL_I;
input                   STB_I;
input                   WE_I;
input                   CAB_I;

reg     `WB_DATA_TYPE   DAT_O;

/*------------------------------------------------------------------------------------------------------
Asynchronous dual-port RAM signals for storing and fetching the data
------------------------------------------------------------------------------------------------------*/
//reg     `WB_DATA_TYPE wb_memory [0:16777215]; // WB memory - 24 addresses connected - 2 LSB not used
reg     `WB_DATA_TYPE wb_memory [0:1048575]; // WB memory - 20 addresses connected - 2 LSB not used
reg     `WB_DATA_TYPE mem_wr_data_out;
reg     `WB_DATA_TYPE mem_rd_data_in;

/*------------------------------------------------------------------------------------------------------
Maximum values for WAIT and RETRY counters and which response !!!
------------------------------------------------------------------------------------------------------*/
reg     [2:0]  a_e_r_resp; // tells with which cycle_termination_signal must wb_slave respond !
reg     [3:0]  wait_cyc;
reg     [7:0]  max_retry;

// assign registers to default state while in reset
always@(RST_I)
begin
  if (RST_I)
  begin
    a_e_r_resp <= 3'b000; // do not respond
    wait_cyc   <= 4'b0; // no wait cycles
    max_retry  <= 8'h0; // no retries
  end
end //reset

task cycle_response;
  input [2:0]  ack_err_rty_resp; // acknowledge, error or retry response input flags
  input [3:0]  wait_cycles; // if wait cycles before each data termination cycle (ack, err or rty)
  input [7:0]  retry_cycles; // noumber of retry cycles before acknowledge cycle
begin
  // assign values
  a_e_r_resp <= #1 ack_err_rty_resp;
  wait_cyc   <= #1 wait_cycles;
  max_retry  <= #1 retry_cycles;
end
endtask // cycle_response

/*------------------------------------------------------------------------------------------------------
Tasks for writing and reading to and from memory !!!
------------------------------------------------------------------------------------------------------*/
reg    `WB_ADDR_TYPE task_wr_adr_i;
reg    `WB_ADDR_TYPE task_rd_adr_i;
reg    `WB_DATA_TYPE task_dat_i;
reg    `WB_DATA_TYPE task_dat_o;
reg    `WB_SEL_TYPE  task_sel_i;
reg                  task_wr_data;
reg                  task_data_written;
reg    `WB_DATA_TYPE task_mem_wr_data;

// write to memory
task wr_mem;
  input  `WB_ADDR_TYPE adr_i;
  input  `WB_DATA_TYPE dat_i;
  input  `WB_SEL_TYPE  sel_i;
begin
  task_data_written = 0;
  task_wr_adr_i = adr_i;
  task_dat_i = dat_i;
  task_sel_i = sel_i;
  task_wr_data = 1;
  wait(task_data_written);
  task_wr_data = 0;
end
endtask

// read from memory
task rd_mem;
  input  `WB_ADDR_TYPE adr_i;
  output `WB_DATA_TYPE dat_o;
  input  `WB_SEL_TYPE  sel_i;
begin
  task_rd_adr_i = adr_i;
  task_sel_i = sel_i;
  #1;
  dat_o = task_dat_o;
end
endtask

/*------------------------------------------------------------------------------------------------------
Internal signals and logic
------------------------------------------------------------------------------------------------------*/
reg            calc_ack;
reg            calc_err;
reg            calc_rty;

reg     [7:0]  retry_cnt;
reg     [7:0]  retry_num;
reg            retry_expired;

// Retry counter
always@(posedge RST_I or posedge CLK_I)
begin
  if (RST_I)
    retry_cnt <= #1 8'h00;
  else
  begin
    if (calc_ack || calc_err)
      retry_cnt <= #1 8'h00;
    else if (calc_rty)
      retry_cnt <= #1 retry_num;
  end
end

always@(retry_cnt or max_retry)
begin
  if (retry_cnt < max_retry)
  begin
    retry_num = retry_cnt + 1'b1;
    retry_expired = 1'b0;
  end
  else
  begin
    retry_num = retry_cnt;
    retry_expired = 1'b1;
  end
end

reg     [3:0]  wait_cnt;
reg     [3:0]  wait_num;
reg            wait_expired;

// Wait counter
always@(posedge RST_I or posedge CLK_I)
begin
  if (RST_I)
    wait_cnt <= #1 4'h0;
  else
  begin
    if (wait_expired || ~STB_I)
      wait_cnt <= #1 4'h0;
    else
      wait_cnt <= #1 wait_num;
  end
end

always@(wait_cnt or wait_cyc or STB_I or a_e_r_resp or retry_expired)
begin
  if ((wait_cyc > 0) && (STB_I))
  begin
    if (wait_cnt < wait_cyc) // 4'h2)
    begin
      wait_num = wait_cnt + 1'b1;
      wait_expired = 1'b0;
      calc_ack = 1'b0;
      calc_err = 1'b0;
      calc_rty = 1'b0;
    end
    else
    begin
      wait_num = wait_cnt;
      wait_expired = 1'b1;
      if (a_e_r_resp == 3'b100)
      begin
        calc_ack = 1'b1;
        calc_err = 1'b0;
        calc_rty = 1'b0;
      end
      else
      if (a_e_r_resp == 3'b010)
      begin
        calc_ack = 1'b0;
        calc_err = 1'b1;
        calc_rty = 1'b0;
      end
      else
      if (a_e_r_resp == 3'b001)
      begin
        calc_err = 1'b0;
        if (retry_expired)
        begin
          calc_ack = 1'b1;
          calc_rty = 1'b0;
        end
        else
        begin
          calc_ack = 1'b0;
          calc_rty = 1'b1;
        end
      end
      else
      begin
        calc_ack = 1'b0;
        calc_err = 1'b0;
        calc_rty = 1'b0;
      end
    end
  end
  else
  if ((wait_cyc == 0) && (STB_I))
  begin
    wait_num = 2'h0;
    wait_expired = 1'b1;
    if (a_e_r_resp == 3'b100)
    begin
      calc_ack = 1'b1;
      calc_err = 1'b0;
      calc_rty = 1'b0;
    end
    else if (a_e_r_resp == 3'b010)
    begin
      calc_ack = 1'b0;
      calc_err = 1'b1;
      calc_rty = 1'b0;
    end
    else if (a_e_r_resp == 3'b001)
    begin
      calc_err = 1'b0;
      if (retry_expired)
      begin
        calc_ack = 1'b1;
        calc_rty = 1'b0;
      end
      else
      begin
        calc_ack = 1'b0;
        calc_rty = 1'b1;
      end
    end
    else
    begin
      calc_ack = 1'b0;
      calc_err = 1'b0;
      calc_rty = 1'b0;
    end
  end
  else
  begin
    wait_num = 2'h0;
    wait_expired = 1'b0;
    calc_ack = 1'b0;
    calc_err = 1'b0;
    calc_rty = 1'b0;
  end
end

wire rd_sel = (CYC_I && STB_I && ~WE_I);
wire wr_sel = (CYC_I && STB_I && WE_I);

// Generate cycle termination signals
assign ACK_O = calc_ack && STB_I;
assign ERR_O = calc_err && STB_I;
assign RTY_O = calc_rty && STB_I;

// Assign address to asynchronous memory
always@(RST_I or ADR_I)
begin
  if (RST_I) // this is added because at start of test bench we need address change in order to get data!
  begin
    #1 mem_rd_data_in = `WB_DATA_WIDTH'hxxxx_xxxx;
  end
  else
  begin
//    #1 mem_rd_data_in = wb_memory[ADR_I[25:2]];
    #1 mem_rd_data_in = wb_memory[ADR_I[21:2]];
  end
end

// Data input/output interface
always@(rd_sel or mem_rd_data_in or RST_I)
begin
  if (RST_I)
    DAT_O <=#1 `WB_DATA_WIDTH'hxxxx_xxxx;	// assign outputs to unknown state while in reset
  else if (rd_sel)
    DAT_O <=#1 mem_rd_data_in;
  else
    DAT_O <=#1 `WB_DATA_WIDTH'hxxxx_xxxx;
end


always@(RST_I or task_rd_adr_i)
begin
  if (RST_I)
    task_dat_o = `WB_DATA_WIDTH'hxxxx_xxxx;
  else
    task_dat_o = wb_memory[task_rd_adr_i[21:2]];
end
always@(CLK_I or wr_sel or task_wr_data or ADR_I or task_wr_adr_i or 
        mem_wr_data_out or DAT_I or task_mem_wr_data or task_dat_i or
        SEL_I or task_sel_i)
begin
  if (task_wr_data)
  begin
    task_mem_wr_data = wb_memory[task_wr_adr_i[21:2]];

    if (task_sel_i[3])
      task_mem_wr_data[31:24] = task_dat_i[31:24];
    if (task_sel_i[2])
      task_mem_wr_data[23:16] = task_dat_i[23:16];
    if (task_sel_i[1])
      task_mem_wr_data[15: 8] = task_dat_i[15: 8];
    if (task_sel_i[0])
      task_mem_wr_data[ 7: 0] = task_dat_i[ 7: 0];

    wb_memory[task_wr_adr_i[21:2]] = task_mem_wr_data; // write data
    task_data_written = 1;
  end
  else if (wr_sel && CLK_I)
  begin
//    mem_wr_data_out = wb_memory[ADR_I[25:2]]; // if no SEL_I is active, old value will be written
    mem_wr_data_out = wb_memory[ADR_I[21:2]]; // if no SEL_I is active, old value will be written

    if (SEL_I[3])
      mem_wr_data_out[31:24] = DAT_I[31:24];
    if (SEL_I[2])
      mem_wr_data_out[23:16] = DAT_I[23:16];
    if (SEL_I[1])
      mem_wr_data_out[15: 8] = DAT_I[15: 8];
    if (SEL_I[0])
      mem_wr_data_out[ 7: 0] = DAT_I[ 7: 0];

//    wb_memory[ADR_I[25:2]]  <= mem_wr_data_out; // write data
    wb_memory[ADR_I[21:2]]      = mem_wr_data_out; // write data
  end
end

endmodule

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -