📄 i2c_master_bit_ctrl.v
字号:
///////////////////////////////////////// Bit controller section///////////////////////////////////////// Translate simple commands into SCL/SDA transitions// Each command has 5 states, A/B/C/D/idle//// start: SCL ~~~~~~~~~~\____// SDA ~~~~~~~~\______// x | A | B | C | D | i//// repstart SCL ____/~~~~\___// SDA __/~~~\______// x | A | B | C | D | i//// stop SCL ____/~~~~~~~~// SDA ==\____/~~~~~// x | A | B | C | D | i////- write SCL ____/~~~~\____// SDA ==X=========X=// x | A | B | C | D | i////- read SCL ____/~~~~\____// SDA XXXX=====XXXX// x | A | B | C | D | i//// Timing: Normal mode Fast mode///////////////////////////////////////////////////////////////////////// Fscl 100KHz 400KHz// Th_scl 4.0us 0.6us High period of SCL// Tl_scl 4.7us 1.3us Low period of SCL// Tsu:sta 4.7us 0.6us setup time for a repeated start condition// Tsu:sto 4.0us 0.6us setup time for a stop conditon// Tbuf 4.7us 1.3us Bus free time between a stop and start condition//// synopsys translate_off`include "timescale.v"// synopsys translate_on`include "i2c_master_defines.v"module i2c_master_bit_ctrl( clk, rst, nReset, clk_cnt, ena, cmd, cmd_ack, busy, al, din, dout, scl_i, scl_o, scl_oen, sda_i, sda_o, sda_oen ); // // inputs & outputs // input clk; input rst; input nReset; input ena; // core enable signal input [15:0] clk_cnt; // clock prescale value input [3:0] cmd; output cmd_ack; // command complete acknowledge reg cmd_ack; output busy; // i2c bus busy reg busy; output al; // i2c bus arbitration lost reg al; input din; output dout; reg dout; // I2C lines input scl_i; // i2c clock line input output scl_o; // i2c clock line output output scl_oen; // i2c clock line output enable (active low) reg scl_oen; input sda_i; // i2c data line input output sda_o; // i2c data line output output sda_oen; // i2c data line output enable (active low) reg sda_oen; // // variable declarations // reg sSCL, sSDA; // synchronized SCL and SDA inputs reg dscl_oen; // delayed scl_oen reg sda_chk; // check SDA output (Multi-master arbitration) reg clk_en; // clock generation signals wire slave_wait;// reg [15:0] cnt = clk_cnt; // clock divider counter (simulation) reg [15:0] cnt; // clock divider counter (synthesis) // // module body // // whenever the slave is not ready it can delay the cycle by pulling SCL low // delay scl_oen always @(posedge clk) dscl_oen <= #1 scl_oen; assign slave_wait = dscl_oen && !sSCL; // generate clk enable signal always @(posedge clk or negedge nReset) if(~nReset) begin cnt <= #1 16'h0; clk_en <= #1 1'b1; end else if (rst) begin cnt <= #1 16'h0; clk_en <= #1 1'b1; end else if ( ~|cnt || ~ena) if (~slave_wait) begin cnt <= #1 clk_cnt; clk_en <= #1 1'b1; end else begin cnt <= #1 cnt; clk_en <= #1 1'b0; end else begin cnt <= #1 cnt - 16'h1; clk_en <= #1 1'b0; end // generate bus status controller reg dSCL, dSDA; reg sta_condition; reg sto_condition; // synchronize SCL and SDA inputs // reduce metastability risc always @(posedge clk or negedge nReset) if (~nReset) begin sSCL <= #1 1'b1; sSDA <= #1 1'b1; dSCL <= #1 1'b1; dSDA <= #1 1'b1; end else if (rst) begin sSCL <= #1 1'b1; sSDA <= #1 1'b1; dSCL <= #1 1'b1; dSDA <= #1 1'b1; end else begin sSCL <= #1 scl_i; sSDA <= #1 sda_i; dSCL <= #1 sSCL; dSDA <= #1 sSDA; end // detect start condition => detect falling edge on SDA while SCL is high // detect stop condition => detect rising edge on SDA while SCL is high always @(posedge clk or negedge nReset) if (~nReset) begin sta_condition <= #1 1'b0; sto_condition <= #1 1'b0; end else if (rst) begin sta_condition <= #1 1'b0; sto_condition <= #1 1'b0; end else begin sta_condition <= #1 ~sSDA & dSDA & sSCL; sto_condition <= #1 sSDA & ~dSDA & sSCL; end // generate i2c bus busy signal always @(posedge clk or negedge nReset) if(!nReset) busy <= #1 1'b0; else if (rst) busy <= #1 1'b0; else busy <= #1 (sta_condition | busy) & ~sto_condition; // generate arbitration lost signal // aribitration lost when: // 1) master drives SDA high, but the i2c bus is low // 2) stop detected while not requested reg cmd_stop, dcmd_stop; always @(posedge clk or negedge nReset) if (~nReset) begin cmd_stop <= #1 1'b0; dcmd_stop <= #1 1'b0; al <= #1 1'b0; end else if (rst) begin cmd_stop <= #1 1'b0; dcmd_stop <= #1 1'b0; al <= #1 1'b0; end else begin cmd_stop <= #1 cmd == `I2C_CMD_STOP; dcmd_stop <= #1 cmd_stop; al <= #1 (sda_chk & ~sSDA & sda_oen) | (sto_condition & ~dcmd_stop); end // generate dout signal (store SDA on rising edge of SCL) always @(posedge clk) if(sSCL & ~dSCL) dout <= #1 sSDA; // generate statemachine // nxt_state decoder parameter [16:0] idle = 17'b0_0000_0000_0000_0000; parameter [16:0] start_a = 17'b0_0000_0000_0000_0001; parameter [16:0] start_b = 17'b0_0000_0000_0000_0010; parameter [16:0] start_c = 17'b0_0000_0000_0000_0100; parameter [16:0] start_d = 17'b0_0000_0000_0000_1000; parameter [16:0] start_e = 17'b0_0000_0000_0001_0000; parameter [16:0] stop_a = 17'b0_0000_0000_0010_0000; parameter [16:0] stop_b = 17'b0_0000_0000_0100_0000; parameter [16:0] stop_c = 17'b0_0000_0000_1000_0000; parameter [16:0] stop_d = 17'b0_0000_0001_0000_0000; parameter [16:0] rd_a = 17'b0_0000_0010_0000_0000; parameter [16:0] rd_b = 17'b0_0000_0100_0000_0000; parameter [16:0] rd_c = 17'b0_0000_1000_0000_0000; parameter [16:0] rd_d = 17'b0_0001_0000_0000_0000; parameter [16:0] wr_a = 17'b0_0010_0000_0000_0000; parameter [16:0] wr_b = 17'b0_0100_0000_0000_0000; parameter [16:0] wr_c = 17'b0_1000_0000_0000_0000; parameter [16:0] wr_d = 17'b1_0000_0000_0000_0000; reg [16:0] c_state; // synopsis enum_state always @(posedge clk or negedge nReset) if (!nReset) begin c_state <= #1 idle; cmd_ack <= #1 1'b0; scl_oen <= #1 1'b1; sda_oen <= #1 1'b1; sda_chk <= #1 1'b0; end else if (rst | al) begin c_state <= #1 idle; cmd_ack <= #1 1'b0; scl_oen <= #1 1'b1; sda_oen <= #1 1'b1; sda_chk <= #1 1'b0; end else begin cmd_ack <= #1 1'b0; // default no command acknowledge + assert cmd_ack only 1clk cycle if (clk_en) case (c_state) // synopsis full_case parallel_case // idle state idle: begin case (cmd) // synopsis full_case parallel_case `I2C_CMD_START: c_state <= #1 start_a; `I2C_CMD_STOP: c_state <= #1 stop_a; `I2C_CMD_WRITE: c_state <= #1 wr_a; `I2C_CMD_READ: c_state <= #1 rd_a; default: c_state <= #1 idle; endcase scl_oen <= #1 scl_oen; // keep SCL in same state sda_oen <= #1 sda_oen; // keep SDA in same state sda_chk <= #1 1'b0; // don't check SDA output end // start start_a: begin c_state <= #1 start_b; scl_oen <= #1 scl_oen; // keep SCL in same state sda_oen <= #1 1'b1; // set SDA high sda_chk <= #1 1'b0; // don't check SDA output end start_b: begin c_state <= #1 start_c; scl_oen <= #1 1'b1; // set SCL high sda_oen <= #1 1'b1; // keep SDA high sda_chk <= #1 1'b0; // don't check SDA output end start_c: begin c_state <= #1 start_d; scl_oen <= #1 1'b1; // keep SCL high sda_oen <= #1 1'b0; // set SDA low sda_chk <= #1 1'b0; // don't check SDA output end start_d: begin c_state <= #1 start_e; scl_oen <= #1 1'b1; // keep SCL high sda_oen <= #1 1'b0; // keep SDA low sda_chk <= #1 1'b0; // don't check SDA output end start_e: begin c_state <= #1 idle; cmd_ack <= #1 1'b1; scl_oen <= #1 1'b0; // set SCL low sda_oen <= #1 1'b0; // keep SDA low sda_chk <= #1 1'b0; // don't check SDA output end // stop stop_a: begin c_state <= #1 stop_b; scl_oen <= #1 1'b0; // keep SCL low sda_oen <= #1 1'b0; // set SDA low sda_chk <= #1 1'b0; // don't check SDA output end stop_b: begin c_state <= #1 stop_c; scl_oen <= #1 1'b1; // set SCL high sda_oen <= #1 1'b0; // keep SDA low sda_chk <= #1 1'b0; // don't check SDA output end stop_c: begin c_state <= #1 stop_d; scl_oen <= #1 1'b1; // keep SCL high sda_oen <= #1 1'b0; // keep SDA low sda_chk <= #1 1'b0; // don't check SDA output end stop_d: begin c_state <= #1 idle; cmd_ack <= #1 1'b1; scl_oen <= #1 1'b1; // keep SCL high sda_oen <= #1 1'b1; // set SDA high sda_chk <= #1 1'b0; // don't check SDA output end // read rd_a: begin c_state <= #1 rd_b; scl_oen <= #1 1'b0; // keep SCL low sda_oen <= #1 1'b1; // tri-state SDA sda_chk <= #1 1'b0; // don't check SDA output end rd_b: begin c_state <= #1 rd_c; scl_oen <= #1 1'b1; // set SCL high sda_oen <= #1 1'b1; // keep SDA tri-stated sda_chk <= #1 1'b0; // don't check SDA output end rd_c: begin c_state <= #1 rd_d; scl_oen <= #1 1'b1; // keep SCL high sda_oen <= #1 1'b1; // keep SDA tri-stated sda_chk <= #1 1'b0; // don't check SDA output end rd_d: begin c_state <= #1 idle; cmd_ack <= #1 1'b1; scl_oen <= #1 1'b0; // set SCL low sda_oen <= #1 1'b1; // keep SDA tri-stated sda_chk <= #1 1'b0; // don't check SDA output end // write wr_a: begin c_state <= #1 wr_b; scl_oen <= #1 1'b0; // keep SCL low sda_oen <= #1 din; // set SDA sda_chk <= #1 1'b0; // don't check SDA output (SCL low) end wr_b: begin c_state <= #1 wr_c; scl_oen <= #1 1'b1; // set SCL high sda_oen <= #1 din; // keep SDA sda_chk <= #1 1'b1; // check SDA output end wr_c: begin c_state <= #1 wr_d; scl_oen <= #1 1'b1; // keep SCL high sda_oen <= #1 din; sda_chk <= #1 1'b1; // check SDA output end wr_d: begin c_state <= #1 idle; cmd_ack <= #1 1'b1; scl_oen <= #1 1'b0; // set SCL low sda_oen <= #1 din; sda_chk <= #1 1'b0; // don't check SDA output (SCL low) end endcase end // assign scl and sda output (always gnd) assign scl_o = 1'b0; assign sda_o = 1'b0;endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -